Patents by Inventor Virgil Nicula

Virgil Nicula has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240062849
    Abstract: Classification of cancer condition, in a plurality of different cancer conditions, for a species, is provided in which, for each training subject in a plurality of training subjects, there is obtained a cancer condition and a genotypic data construct including genotypic information for the respective training subject. Genotypic constructs are formatted into corresponding vector sets comprising one or more vectors. Vector sets are provided to a network architecture including a convolutional neural network path comprising at least a first convolutional layer associated with a first filter that comprise a first set of filter weights and a scorer. Scores, corresponding to the input of vector sets into the network architecture, are obtained from the scorer. Comparison of respective scores to the corresponding cancer condition of the corresponding training subjects is used to adjust the filter weights thereby training the network architecture to classify cancer condition.
    Type: Application
    Filed: August 31, 2023
    Publication date: February 22, 2024
    Applicant: GRAIL, LLC
    Inventors: Virgil NICULA, Anton VALOUEV, Darya FILIPPOVA, Matthew H. LARSON, M. Cyrus MAHER, Monica Portela dos Santos Pimentel, Robert Abe Paine CALEF, Collin MELTON
  • Patent number: 11783915
    Abstract: Classification of cancer condition, in a plurality of different cancer conditions, for a species, is provided in which, for each training subject in a plurality of training subjects, there is obtained a cancer condition and a genotypic data construct including genotypic information for the respective training subject. Genotypic constructs are formatted into corresponding vector sets comprising one or more vectors. Vector sets are provided to a network architecture including a convolutional neural network path comprising at least a first convolutional layer associated with a first filter that comprise a first set of filter weights and a scorer. Scores, corresponding to the input of vector sets into the network architecture, are obtained from the scorer. Comparison of respective scores to the corresponding cancer condition of the corresponding training subjects is used to adjust the filter weights thereby training the network architecture to classify cancer condition.
    Type: Grant
    Filed: September 29, 2022
    Date of Patent: October 10, 2023
    Assignee: GRAIL, LLC
    Inventors: Virgil Nicula, Anton Valouev, Darya Filippova, Matthew H. Larson, M. Cyrus Maher, Monica Portela dos Santos Pimentel, Robert Abe Paine Calef, Collin Melton
  • Publication number: 20230170048
    Abstract: Technical solutions for classifying patients with respect to multiple cancer classes are provided. The classification can be done using cell-free whole genome sequencing information from subjects. A reference set of subjects is used to train classifiers to recognize genomic markers that distinguish such cancer classes. The classifier training includes dividing the reference genome into a set of non-overlapping bins, applying a dimensionality reduction method to obtain a feature set, and using the feature set to train classifiers. For subjects with unknown cancer class, the trained classifiers provide probabilities or likelihoods that the subject has a respective cancer class for each cancer in a set of cancer classes. The present disclosure thus describes methods to improve the screening and detection of cancer class from among several cancer classes. This serves to facilitate early and appropriate treatment for subjects afflicted with cancer.
    Type: Application
    Filed: January 6, 2023
    Publication date: June 1, 2023
    Applicant: Grail, LLC
    Inventors: M. Cyrus MAHER, Anton VALOUEV, Darya FILIPPOVA, Virgil NICULA, Karthik JAGADEESH, Oliver Claude VENN, Samuel S. GROSS, John F. BEAUSANG, Robert Abe Paine CALEF
  • Publication number: 20230045925
    Abstract: Classification of cancer condition, in a plurality of different cancer conditions, for a species, is provided in which, for each training subject in a plurality of training subjects, there is obtained a cancer condition and a genotypic data construct including genotypic information for the respective training subject. Genotypic constructs are formatted into corresponding vector sets comprising one or more vectors. Vector sets are provided to a network architecture including a convolutional neural network path comprising at least a first convolutional layer associated with a first filter that comprise a first set of filter weights and a scorer. Scores, corresponding to the input of vector sets into the network architecture, are obtained from the scorer. Comparison of respective scores to the corresponding cancer condition of the corresponding training subjects is used to adjust the filter weights thereby training the network architecture to classify cancer condition.
    Type: Application
    Filed: September 29, 2022
    Publication date: February 16, 2023
    Applicant: GRAIL, LLC
    Inventors: Virgil Nicula, Anton Valouev, Darya Filippova, Matthew H. Larson, M. Cyrus Maher, Monica Portela dos Santos Pimentel, Robert Abe Paine Calef, Collin Melton
  • Patent number: 11581062
    Abstract: Technical solutions for classifying patients with respect to multiple cancer classes are provided. The classification can be done using cell-free whole genome sequencing information from subjects. A reference set of subjects is used to train classifiers to recognize genomic markers that distinguish such cancer classes. The classifier training includes dividing the reference genome into a set of non-overlapping bins, applying a dimensionality reduction method to obtain a feature set, and using the feature set to train classifiers. For subjects with unknown cancer class, the trained classifiers provide probabilities or likelihoods that the subject has a respective cancer class for each cancer in a set of cancer classes. The present disclosure thus describes methods to improve the screening and detection of cancer class from among several cancer classes. This serves to facilitate early and appropriate treatment for subjects afflicted with cancer.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: February 14, 2023
    Assignee: GRAIL, LLC
    Inventors: M. Cyrus Maher, Anton Valouev, Darya Filippova, Virgil Nicula, Karthik Jagadeesh, Oliver Claude Venn, Samuel S. Gross, John F. Beausang, Robert Abe Paine Calef
  • Patent number: 11482303
    Abstract: Classification of cancer condition, in a plurality of different cancer conditions, for a species, is provided in which, for each training subject in a plurality of training subjects, there is obtained a cancer condition and a genotypic data construct including genotypic information for the respective training subject. Genotypic constructs are formatted into corresponding vector sets comprising one or more vectors. Vector sets are provided to a network architecture including a convolutional neural network path comprising at least a first convolutional layer associated with a first filter that comprise a first set of filter weights and a scorer. Scores, corresponding to the input of vector sets into the network architecture, are obtained from the scorer. Comparison of respective scores to the corresponding cancer condition of the corresponding training subjects is used to adjust the filter weights thereby training the network architecture to classify cancer condition.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: October 25, 2022
    Assignee: GRAIL, LLC
    Inventors: Virgil Nicula, Anton Valouev, Darya Filippova, Matthew H. Larson, M. Cyrus Maher, Monica Portela dos Santos Pimentel, Robert Abe Paine Calef, Collin Melton
  • Publication number: 20210358626
    Abstract: A method for discriminating a cancer state is provided. A first dataset is obtained for a plurality of subjects having a first cancer state. Each subject has a plurality of nucleic acid methylation fragments with methylation patterns comprising CpG site methylation states. An autoencoder including an encoder and decoder is trained by evaluating the error in the autoencoder reconstruction of the methylation pattern and nucleic acid sequence of each nucleic acid methylation fragment in the first dataset. A second dataset is obtained for a plurality of subjects having a second cancer state. A plurality of features is identified by inputting the methylation pattern and nucleic acid sequence of each nucleic acid methylation fragment in the second dataset into the trained autoencoder and computing a score determined by the autoencoder reconstruction of the methylation pattern. The plurality of features is used to train a supervised model that discriminates a cancer state.
    Type: Application
    Filed: March 4, 2021
    Publication date: November 18, 2021
    Inventors: Virgil Nicula, Joshua Newman
  • Publication number: 20210327534
    Abstract: Methods for determining a disease condition of a subject of a species are provided that comprises obtaining a dataset of fragment methylation patterns determined by methylation sequencing of nucleic acid from a biological sample of the subject. A fragment methylation pattern comprises the methylation state of each CpG site in the fragment. A patch including a channel comprising parameters for the methylation status of respective CpG sites in a set of CpG sites in a reference genome represented by the patch is constructed by populating, for each respective fragment in the plurality of fragments that aligns to the set of CpG sites, an instance of all or a portion of the plurality of parameters based on the methylation pattern of the respective fragment. Application of the patch to a patch convolutional neural network determines the disease condition of the subject.
    Type: Application
    Filed: December 11, 2020
    Publication date: October 21, 2021
    Applicant: GRAIL, INC.
    Inventors: Virgil Nicula, Ognjen Nikolic, Yasushi Saito, Marius Eriksen, Josh Newman, Darya Filippova, Alexander Yip, Oliver Venn, Joerg Bredno, Qinwen Liu, Alexander P. Fields
  • Publication number: 20210313006
    Abstract: Methods and systems for detecting cancer and/or determining a cancer tissue of origin are disclosed. Fragments are grouped into genomic regions, wherein a region model is trained for each genomic region. Fragments are input into the region models, and the outputs are used to generate a feature vector for cancer classification. In one embodiment, the region models are shallow neural networks configured to generate a score indicating a likelihood that a fragment is derived from a cancer biological sample. The feature vector is determined based on counts of fragments having scores above threshold scores for the various genomic regions. In another embodiment, the regions models are configured to generate a region embedding for an input methylation embedding of a fragment. The region embeddings are pooled by region and then pooled again to generate the feature vector.
    Type: Application
    Filed: March 29, 2021
    Publication date: October 7, 2021
    Inventors: Samuel S. Gross, Joshua Newman, Virgil Nicula
  • Publication number: 20200185059
    Abstract: Technical solutions for classifying patients with respect to multiple cancer classes are provided. The classification can be done using cell-free whole genome sequencing information from subjects. A reference set of subjects is used to train classifiers to recognize genomic markers that distinguish such cancer classes. The classifier training includes dividing the reference genome into a set of non-overlapping bins, applying a dimensionality reduction method to obtain a feature set, and using the feature set to train classifiers. For subjects with unknown cancer class, the trained classifiers provide probabilities or likelihoods that the subject has a respective cancer class for each cancer in a set of cancer classes. The present disclosure thus describes methods to improve the screening and detection of cancer class from among several cancer classes. This serves to facilitate early and appropriate treatment for subjects afflicted with cancer.
    Type: Application
    Filed: December 10, 2019
    Publication date: June 11, 2020
    Inventors: M. Cyrus Maher, Anton Valouev, Darya Filippova, Virgil Nicula, Karthik Jagadeesh, Oliver Claude Venn, Samuel S. Gross, John F. Beausang, Robert Abe Paine Calef
  • Publication number: 20200005899
    Abstract: Classification of cancer condition, in a plurality of different cancer conditions, for a species, is provided in which, for each training subject in a plurality of training subjects, there is obtained a cancer condition and a genotypic data construct including genotypic information for the respective training subject. Genotypic constructs are formatted into corresponding vector sets comprising one or more vectors. Vector sets are provided to a network architecture including a convolutional neural network path comprising at least a first convolutional layer associated with a first filter that comprise a first set of filter weights and a scorer. Scores, corresponding to the input of vector sets into the network architecture, are obtained from the scorer. Comparison of respective scores to the corresponding cancer condition of the corresponding training subjects is used to adjust the filter weights thereby training the network architecture to classify cancer condition.
    Type: Application
    Filed: May 31, 2019
    Publication date: January 2, 2020
    Inventors: Virgil Nicula, Anton Valouev, Darya Filippova, Matthew H. Larson, M. Cyrus Maher, Monica Portela dos Santos Pimentel, Robert Abe Paine Calef, Collin Melton
  • Publication number: 20190316209
    Abstract: A predictive cancer model generates a cancer prediction for an individual of interest by analyzing values of one or more types of features that are derived from cfDNA obtained from the individual. Specifically, cfDNA from the individual is sequenced to generate sequence reads using one or more physical assays, examples of which include a small variant sequencing assay, whole genome sequencing assay, and methylation sequencing assay. The sequence reads of the physical assays are processed through corresponding computational analyses to generate each of small variant features, whole genome features, and methylation features. The values of features can be provided to a predictive cancer model that generates a cancer prediction. In some embodiments, the values of different types of features can be separately provided into different predictive models. Each separate predictive model can output a score that can serve as input into an overall model that outputs the cancer prediction.
    Type: Application
    Filed: April 15, 2019
    Publication date: October 17, 2019
    Inventors: Earl Hubbell, Samuel S. Gross, Darya Filippova, Ling Shen, Oliver Claude Venn, Alexander Weaver Blocker, Nan Zhang, Tara Maddala, Alex Aravanis, Qinwen Liu, Anton Valouev, Virgil Nicula
  • Publication number: 20190287649
    Abstract: A system, method and computer program product for analyzing data of high dimensionality (e.g., sequence reads of nucleic acid samples in connection with a disease condition) are provided.
    Type: Application
    Filed: March 13, 2019
    Publication date: September 19, 2019
    Inventors: Darya Filippova, Anton Valouev, Virgil Nicula, Karthik Jagadeesh, M. Cyrus Maher, Matthew H. Larson, Monica Portela dos Santos Pimentel, Robert Abe Paine Calef