Patents by Inventor Viswanadham Garimella

Viswanadham Garimella has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040110220
    Abstract: The invention provides methods of detecting a nucleic acid. The methods comprise contacting the nucleic acid with one or more types of particles having oligonucleotides attached thereto. In one embodiment of the method, the oligonucleotides are attached to nanoparticles and have sequences complementary to portions of the sequence of the nucleic acid. A detectable change (preferably a color change) is brought about as a result of the hybridization of the oligonucleotides on the nanoparticles to the nucleic acid. The invention also provides compositions and kits comprising particles. The invention further provides methods of synthesizing unique nanoparticle-oligonucleotide conjugates, the conjugates produced by the methods, and methods of using the conjugates. In addition, the invention provides nanomaterials and nanostructures comprising nanoparticles and methods of nanofabrication utilizing nanoparticles. Finally, the invention provides a method of separating a selected nucleic acid from other nucleic acids.
    Type: Application
    Filed: November 18, 2003
    Publication date: June 10, 2004
    Applicant: Nanosphere, Inc.
    Inventors: Chad A. Mirkin, Robert L. Letsinger, Robert C. Mucic, James J. Storhoff, Robert Elghanian, Thomas A. Taton, Viswanadham Garimella, Zhi Li
  • Publication number: 20040101889
    Abstract: The present invention relates to a method for amplifying a detection signal by enhancing or promoting the deposition of additional silver in assay detection systems where the formation of a silver spot serves as a reporter for the presence of a target molecule, including biological polymers (e.g., proteins and nucleic acids) and small molecules.
    Type: Application
    Filed: August 4, 2003
    Publication date: May 27, 2004
    Applicant: Northwestern University
    Inventors: Robert L. Letsinger, Viswanadham Garimella
  • Publication number: 20040096856
    Abstract: A method for the efficient immobilization of silylated molecules such as silylated oligonucleotides or proteins onto unmodified surfaces such as a glass surface is provided. Also provided are compounds, devices, and kits for modifying surfaces such as glass surfaces.
    Type: Application
    Filed: May 28, 2003
    Publication date: May 20, 2004
    Applicant: Nanosphere, Inc.
    Inventors: Viswanadham Garimella, Yasmith Bernal
  • Publication number: 20040072231
    Abstract: The invention provides methods of detecting a nucleic acid. The methods comprise contacting the nucleic acid with one or more types of particles having oligonucleotides attached thereto. In one embodiment of the method, the oligonucleotides are attached to nanoparticles and have sequences complementary to portions of the sequence of the nucleic acid. A detectable change (preferably a color change) is brought about as a result of the hybridization of the oligonucleotides on the nanoparticles to the nucleic acid. The invention also provides compositions and kits comprising particles. The invention further provides methods of synthesizing unique nanoparticle-oligonucleotide conjugates, the conjugates produced by the methods, and methods of using the conjugates. In addition, the invention provides nanomaterials and nanostructures comprising nanoparticles and methods of nanofabrication utilizing nanoparticles. Finally, the invention provides a method of separating a selected nucleic acid from other nucleic acids.
    Type: Application
    Filed: August 13, 2003
    Publication date: April 15, 2004
    Applicant: Nanosphere, Inc.
    Inventors: Chad A. Mirkin, Robert L. Letsinger, Robert C. Mucic, James J. Storhoff, Robert Elghanian, Thomas A. Taton, Viswanadham Garimella, Zhi Li, So-Jung Park
  • Patent number: 6602669
    Abstract: The present invention relates to a method for amplifying a detection signal by enhancing or promoting the deposition of additional silver in assay detection systems where the formation of a silver spot serves as a reporter for the presence of a target molecule, including biological polymers (e.g., proteins and nucleic acids) and small molecules.
    Type: Grant
    Filed: July 11, 2001
    Date of Patent: August 5, 2003
    Assignee: Northwestern University
    Inventors: Robert L. Letsinger, Viswanadham Garimella
  • Publication number: 20030143598
    Abstract: The invention provides nanoparticle-bioconjugate probes that are useful for detecting target analytes such as nucleic acids. The probes of the invention are stable towards heat and resistant to displacement by thiol containing compounds such as DTT (dithiothreitol).
    Type: Application
    Filed: November 8, 2002
    Publication date: July 31, 2003
    Inventors: Viswanadham Garimella, James J. Storhoff
  • Publication number: 20030082588
    Abstract: A method for immobilizing amino-group containing molecules onto surfaces and devices having immobilized isocyanate-group containing molecules prepared by the method are disclosed. The method comprises reacting a surface (i.e.
    Type: Application
    Filed: July 12, 2002
    Publication date: May 1, 2003
    Inventor: Viswanadham Garimella
  • Publication number: 20020172953
    Abstract: The invention provides methods of detecting a nucleic acid. The methods comprise contacting the nucleic acid with one or more types of particles having oligonucleotides attached thereto. In one embodiment of the method, the oligonucleotides are attached to nanoparticles and have sequences complementary to portions of the sequence of the nucleic acid. A detectable change (preferably a color change) is brought about as a result of the hybridization of the oligonucleotides on the nanoparticles to the nucleic acid. The invention also provides compositions and kits comprising particles. The invention further provides methods of synthesizing unique nanoparticle-oligonucleotide conjugates, the conjugates produced by the methods, and methods of using the conjugates. In addition, the invention provides nanomaterials and nanostructures comprising nanoparticles and methods of nanofabrication utilizing nanoparticles. Finally, the invention provides a method of separating a selected nucleic acid from other nucleic acids.
    Type: Application
    Filed: August 10, 2001
    Publication date: November 21, 2002
    Inventors: Chad A. Mirkin, Robert L. Letsinger, Robert C. Mucic, James J. Storhoff, Robert Elghanian, Thomas Andrew Taton, Viswanadham Garimella, Zhi Li, So-Jung Park
  • Publication number: 20020155442
    Abstract: The invention provides methods of detecting a nucleic acid. The methods comprise contacting the nucleic acid with one or more types of particles having oligonucleotides attached thereto. In one embodiment of the method, the oligonucleotides are attached to nanoparticles and have sequences complementary to portions of the sequence of the nucleic acid. A detectable change (preferably a color change) is brought about as a result of the hybridization of the oligonucleotides on the nanoparticles to the nucleic acid. The invention also provides compositions and kits comprising particles. The invention further provides methods of synthesizing unique nanoparticle-oligonucleotide conjugates, the conjugates produced by the methods, and methods of using the conjugates. In addition, the invention provides nanomaterials and nanostructures comprising nanoparticles and methods of nanofabrication utilizing nanoparticles. Finally, the invention provides a method of separating a selected nucleic acid from other nucleic acids.
    Type: Application
    Filed: January 12, 2001
    Publication date: October 24, 2002
    Inventors: Chad A. Mirkin, Robert L. Letsinger, Robert C. Mucic, James J. Storhoff, Robert Elghanian, Thomas A. Taton, Viswanadham Garimella, Zhi Li
  • Publication number: 20020034756
    Abstract: The present invention relates to a method for amplifying a detection signal by enhancing or promoting the deposition of additional silver in assay detection systems where the formation of a silver spot serves as a reporter for the presence of a target molecule, including biological polymers (e.g., proteins and nucleic acids) and small molecules.
    Type: Application
    Filed: July 11, 2001
    Publication date: March 21, 2002
    Inventors: Robert L. Letsinger, Viswanadham Garimella