Patents by Inventor Vivek Kumar Singh

Vivek Kumar Singh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170337732
    Abstract: For human body representation, bone length or other size characteristic that varies within the population is incorporated into the geometric model of the skeleton. The geometric model may be normalized for shape or tissue modeling, allowing modeling of the shape without dedicating aspects of the data-driven shape model to the length or other size characteristic. Given the same number or extent of components of the data-driven shape model, greater or finer details of the shape may be modeled since components are not committed to the size characteristic.
    Type: Application
    Filed: May 18, 2016
    Publication date: November 23, 2017
    Inventors: Birgi Tamersoy, Kai Ma, Vivek Kumar Singh, Yao-jen Chang, Ziyan Wu, Terrence Chen, Andreas Wimmer
  • Publication number: 20170265754
    Abstract: A method and system for determining fractional flow reserve (FFR) for a coronary artery stenosis of a patient is disclosed. In one embodiment, medical image data of the patient including the stenosis is received, a set of features for the stenosis is extracted from the medical image data of the patient, and an FFR value for the stenosis is determined based on the extracted set of features using a trained machine-learning based mapping. In another embodiment, a medical image of the patient including the stenosis of interest is received, image patches corresponding to the stenosis of interest and a coronary tree of the patient are detected, an FFR value for the stenosis of interest is determined using a trained deep neural network regressor applied directly to the detected image patches.
    Type: Application
    Filed: June 7, 2017
    Publication date: September 21, 2017
    Inventors: Puneet Sharma, Ali Kamen, Bogdan Georgescu, Frank Sauer, Dorin Comaniciu, Yefeng Zheng, Hien Nguyen, Vivek Kumar Singh
  • Patent number: 9767385
    Abstract: Object detection uses a deep or multiple layer network to learn features for detecting the object in the image. Multiple features from different layers are aggregated to train a classifier for the object. In addition or as an alternative to feature aggregation from different layers, an initial layer may have separate learnt nodes for different regions of the image to reduce the number of free parameters. The object detection is learned or a learned object detector is applied.
    Type: Grant
    Filed: August 12, 2014
    Date of Patent: September 19, 2017
    Assignee: Siemens Healthcare GmbH
    Inventors: Hien Nguyen, Vivek Kumar Singh, Yefeng Zheng, Bogdan Georgescu, Dorin Comaniciu, Shaohua Kevin Zhou
  • Patent number: 9730643
    Abstract: A method and system for anatomical object detection using marginal space deep neural networks is disclosed. The pose parameter space for an anatomical object is divided into a series of marginal search spaces with increasing dimensionality. A respective sparse deep neural network is trained for each of the marginal search spaces, resulting in a series of trained sparse deep neural networks. Each of the trained sparse deep neural networks is trained by injecting sparsity into a deep neural network by removing filter weights of the deep neural network.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: August 15, 2017
    Assignee: Siemens Healthcare GmbH
    Inventors: Bogdan Georgescu, Yefeng Zheng, Hien Nguyen, Vivek Kumar Singh, Dorin Comaniciu, David Liu
  • Patent number: 9700219
    Abstract: A method and system for determining fractional flow reserve (FFR) for a coronary artery stenosis of a patient is disclosed. In one embodiment, medical image data of the patient including the stenosis is received, a set of features for the stenosis is extracted from the medical image data of the patient, and an FFR value for the stenosis is determined based on the extracted set of features using a trained machine-learning based mapping. In another embodiment, a medical image of the patient including the stenosis of interest is received, image patches corresponding to the stenosis of interest and a coronary tree of the patient are detected, an FFR value for the stenosis of interest is determined using a trained deep neural network regressor applied directly to the detected image patches.
    Type: Grant
    Filed: October 16, 2014
    Date of Patent: July 11, 2017
    Assignee: Siemens Healthcare GmbH
    Inventors: Puneet Sharma, Ali Kamen, Bogdan Georgescu, Frank Sauer, Dorin Comaniciu, Yefeng Zheng, Hien Nguyen, Vivek Kumar Singh
  • Patent number: 9668699
    Abstract: A method and system for anatomical object detection using marginal space deep neural networks is disclosed. The pose parameter space for an anatomical object is divided into a series of marginal search spaces with increasing dimensionality. A respective deep neural network is trained for each of the marginal search spaces, resulting in a series of trained deep neural networks. Each of the trained deep neural networks can evaluate hypotheses in a current parameter space using discriminative classification or a regression function. An anatomical object is detected in a medical image by sequentially applying the series of trained deep neural networks to the medical image.
    Type: Grant
    Filed: May 12, 2015
    Date of Patent: June 6, 2017
    Assignee: Siemens Healthcare GmbH
    Inventors: Bogdan Georgescu, Yefeng Zheng, Hien Nguyen, Vivek Kumar Singh, Dorin Comaniciu, David Liu
  • Patent number: 9665936
    Abstract: A computer-implemented method for providing a see-through visualization of a patient includes receiving an image dataset representative of anatomical features of the patient acquired using a medical image scanner and acquiring a body surface model of the patient using an RGB-D sensor. The body surface model is aligned with the image dataset in a canonical/common coordinate system to yield an aligned body surface model. A relative pose of a mobile device is determined with respect to the RGB-D sensor and a pose dependent visualization of the patient is created by rendering the image dataset at a viewpoint corresponding to the relative pose of the mobile device. Then, the pose dependent visualization of the patient may be presented on the mobile device.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: May 30, 2017
    Assignee: Siemens Healthcare GmbH
    Inventors: Stefan Kluckner, Vivek Kumar Singh, Kai Ma, Yao-Jen Chang, Terrence Chen, Daphne Yu, John Paulus, Jr.
  • Patent number: 9633435
    Abstract: A computer-implemented method for automatically calibrating an RGB-D sensor and an imaging device using a transformation matrix includes using a medical image scanner to acquire a first dataset representative of an apparatus attached to a downward facing surface of a patient table, wherein corners of the apparatus are located at a plurality of corner locations. The plurality of corner locations are identified based on the first dataset and the RGB-D sensor is used to acquire a second dataset representative of a plurality of calibration markers displayed on an upward facing surface of the patient table at the corner locations. A plurality of calibration marker locations are identified based on the second dataset and the transformation matrix is generated by aligning the first dataset and the second dataset using the plurality of corner locations and the plurality of calibration marker locations.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: April 25, 2017
    Inventors: Kai Ma, Yao-jen Chang, Vivek Kumar Singh, Thomas O'Donnell, Michael Wels, Tobias Betz, Andreas Wimmer, Terrence Chen
  • Patent number: 9633306
    Abstract: A method and system for approximating a deep neural network for anatomical object detection is discloses. A deep neural network is trained to detect an anatomical object in medical images. An approximation of the trained deep neural network is calculated that reduces the computational complexity of the trained deep neural network. The anatomical object is detected in an input medical image of a patient using the approximation of the trained deep neural network.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: April 25, 2017
    Assignee: Siemens Healthcare GmbH
    Inventors: David Liu, Nathan Lay, Shaohua Kevin Zhou, Jan Kretschmer, Hien Nguyen, Vivek Kumar Singh, Yefeng Zheng, Bogdan Georgescu, Dorin Comaniciu
  • Publication number: 20170100089
    Abstract: A method and apparatus for X-ray tube scanner automation using a 3D camera is disclosed. An RGBD image of a patient on a patient table is received from a 3D camera mounted on an X-ray tube. A transformation between a coordinate system of the 3D camera and a coordinate system of the patient table is calculated. A patient model is estimated from the RGBD image of the patient. The X-ray tube is automatically controlled to acquire an X-ray image of a region of interest of the patient based on the patient model.
    Type: Application
    Filed: October 13, 2015
    Publication date: April 13, 2017
    Inventors: Yao-Jen Chang, Vivek Kumar Singh, Kai Ma, Ralf Nanke, Susanne Dornberger, Terrence Chen
  • Publication number: 20170091940
    Abstract: A computer-implemented method for automatically calibrating an RGB-D sensor and an imaging device using a transformation matrix includes using a medical image scanner to acquire a first dataset representative of an apparatus attached to a downward facing surface of a patient table, wherein corners of the apparatus are located at a plurality of corner locations. The plurality of corner locations are identified based on the first dataset and the RGB-D sensor is used to acquire a second dataset representative of a plurality of calibration markers displayed on an upward facing surface of the patient table at the corner locations. A plurality of calibration marker locations are identified based on the second dataset and the transformation matrix is generated by aligning the first dataset and the second dataset using the plurality of corner locations and the plurality of calibration marker locations.
    Type: Application
    Filed: September 25, 2015
    Publication date: March 30, 2017
    Inventors: Kai Ma, Yao-jen Chang, Vivek Kumar Singh, Thomas O'Donnell, Michael Wels, Tobias Betz, Andreas Wimmer, Terrence Chen
  • Publication number: 20170091939
    Abstract: A computer-implemented method for providing a see-through visualization of a patient includes receiving an image dataset representative of anatomical features of the patient acquired using a medical image scanner and acquiring a body surface model of the patient using an RGB-D sensor. The body surface model is aligned with the image dataset in a canonical/common coordinate system to yield an aligned body surface model. A relative pose of a mobile device is determined with respect to the RGB-D sensor and a pose dependent visualization of the patient is created by rendering the image dataset at a viewpoint corresponding to the relative pose of the mobile device. Then, the pose dependent visualization of the patient may be presented on the mobile device.
    Type: Application
    Filed: September 25, 2015
    Publication date: March 30, 2017
    Inventors: Stefan Kluckner, Vivek Kumar Singh, Kai Ma, Yao-Jen Chang, Terrence Chen, Daphne Yu, John Paulus, JR.
  • Patent number: 9538925
    Abstract: A method and system for determining fractional flow reserve (FFR) for a coronary artery stenosis of a patient is disclosed. In one embodiment, medical image data of the patient including the stenosis is received, a set of features for the stenosis is extracted from the medical image data of the patient, and an FFR value for the stenosis is determined based on the extracted set of features using a trained machine-learning based mapping. In another embodiment, a medical image of the patient including the stenosis of interest is received, image patches corresponding to the stenosis of interest and a coronary tree of the patient are detected, an FFR value for the stenosis of interest is determined using a trained deep neural network regressor applied directly to the detected image patches.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: January 10, 2017
    Assignee: Siemens Healthcare GmbH
    Inventors: Puneet Sharma, Ali Kamen, Bogdan Georgescu, Frank Sauer, Dorin Comaniciu, Yefeng Zheng, Hien Nguyen, Vivek Kumar Singh
  • Patent number: 9524582
    Abstract: A method and apparatus for generating a 3D personalized mesh of a person from a depth camera image for medical imaging scan planning is disclosed. A depth camera image of a subject is converted to a 3D point cloud. A plurality of anatomical landmarks are detected in the 3D point cloud. A 3D avatar mesh is initialized by aligning a template mesh to the 3D point cloud based on the detected anatomical landmarks. A personalized 3D avatar mesh of the subject is generated by optimizing the 3D avatar mesh using a trained parametric deformable model (PDM). The optimization is subject to constraints that take into account clothing worn by the subject and the presence of a table on which the subject in lying.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: December 20, 2016
    Assignee: Siemens Healthcare GmbH
    Inventors: Kai Ma, Terrence Chen, Vivek Kumar Singh, Yao-jen Chang, Michael Wels, Grzegorz Soza
  • Publication number: 20160328643
    Abstract: A method and system for approximating a deep neural network for anatomical object detection is discloses. A deep neural network is trained to detect an anatomical object in medical images. An approximation of the trained deep neural network is calculated that reduces the computational complexity of the trained deep neural network. The anatomical object is detected in an input medical image of a patient using the approximation of the trained deep neural network.
    Type: Application
    Filed: May 7, 2015
    Publication date: November 10, 2016
    Inventors: David Liu, Nathan Lay, Shaohua Kevin Zhou, Jan Kretschmer, Hien Nguyen, Vivek Kumar Singh, Yefeng Zheng, Bogdan Georgescu, Dorin Comaniciu
  • Publication number: 20160306924
    Abstract: A method for estimating a body surface model of a patient includes: (a) segmenting, by a computer processor, three-dimensional sensor image data to isolate patient data from environmental data; (b) categorizing, by the computer processor, a body pose of the patient from the patient data using a first trained classifier; (c) parsing, by the computer processor, the patient data to an anatomical feature of the patient using a second trained classifier, wherein the parsing is based on a result of the categorizing; and (d) estimating, by the computer processor, the body surface model of the patient based on a result of the parsing. Systems for estimating a body surface model of a patient are described.
    Type: Application
    Filed: January 27, 2015
    Publication date: October 20, 2016
    Inventors: Vivek Kumar Singh, Yao-jen Chang, Kai Ma, Terrence Chen, Michael Wels, Grzegorz Soza
  • Publication number: 20160174902
    Abstract: A method and system for anatomical object detection using marginal space deep neural networks is disclosed. The pose parameter space for an anatomical object is divided into a series of marginal search spaces with increasing dimensionality. A respective sparse deep neural network is trained for each of the marginal search spaces, resulting in a series of trained sparse deep neural networks. Each of the trained sparse deep neural networks is trained by injecting sparsity into a deep neural network by removing filter weights of the deep neural network.
    Type: Application
    Filed: February 26, 2016
    Publication date: June 23, 2016
    Inventors: Bogdan Georgescu, Yefeng Zheng, Hien Hguyen, Vivek Kumar Singh, Dorin Comaniciu, David Liu
  • Publication number: 20160106321
    Abstract: A method and system for determining fractional flow reserve (FFR) for a coronary artery stenosis of a patient is disclosed. In one embodiment, medical image data of the patient including the stenosis is received, a set of features for the stenosis is extracted from the medical image data of the patient, and an FFR value for the stenosis is determined based on the extracted set of features using a trained machine-learning based mapping. In another embodiment, a medical image of the patient including the stenosis of interest is received, image patches corresponding to the stenosis of interest and a coronary tree of the patient are detected, an FFR value for the stenosis of interest is determined using a trained deep neural network regressor applied directly to the detected image patches.
    Type: Application
    Filed: April 13, 2015
    Publication date: April 21, 2016
    Inventors: Puneet Sharma, Ali Kamen, Bogdan Georgescu, Frank Sauer, Dorin Comaniciu, Yefeng Zheng, Hien Nguyen, Vivek Kumar Singh
  • Publication number: 20160048741
    Abstract: Object detection uses a deep or multiple layer network to learn features for detecting the object in the image. Multiple features from different layers are aggregated to train a classifier for the object. In addition or as an alternative to feature aggregation from different layers, an initial layer may have separate learnt nodes for different regions of the image to reduce the number of free parameters. The object detection is learned or a learned object detector is applied.
    Type: Application
    Filed: August 12, 2014
    Publication date: February 18, 2016
    Inventors: Hien Nguyen, Vivek Kumar Singh, Yefeng Zheng, Bogdan Georgescu, Dorin Comaniciu, Shaohua Kevin Zhou
  • Publication number: 20150238148
    Abstract: A method and system for anatomical object detection using marginal space deep neural networks is disclosed. The pose parameter space for an anatomical object is divided into a series of marginal search spaces with increasing dimensionality. A respective deep neural network is trained for each of the marginal search spaces, resulting in a series of trained deep neural networks. Each of the trained deep neural networks can evaluate hypotheses in a current parameter space using discriminative classification or a regression function. An anatomical object is detected in a medical image by sequentially applying the series of trained deep neural networks to the medical image.
    Type: Application
    Filed: May 12, 2015
    Publication date: August 27, 2015
    Inventors: Bogdan Georgescu, Yefeng Zheng, Hien Nguyen, Vivek Kumar Singh, Dorin Comaniciu, David Liu