Patents by Inventor Vivek V. Dhas

Vivek V. Dhas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240118602
    Abstract: A method for preparing photoactive perovskite materials. The method comprises the steps of: introducing a lead halide and a first solvent to a first vessel and contacting the lead halide with the first solvent to dissolve the lead halide to form a lead halide solution, introducing a Group 1 metal halide a second solvent into a second vessel and contacting the Group 1 metal halide with the second solvent to dissolve the Group 1 metal halide to form a Group 1 metal halide solution, and contacting the lead halide solution with the Group 1 metal halide solution to form a thin-film precursor ink. The method further comprises depositing the thin-film precursor ink onto a substrate, drying the thin-film precursor ink to form a thin film, annealing the thin film; and rinsing the thin film with a salt solution.
    Type: Application
    Filed: December 20, 2023
    Publication date: April 11, 2024
    Inventors: Michael D. Irwin, Kamil Mielczarek, Vivek V. Dhas
  • Patent number: 11953821
    Abstract: A method for preparing photoactive perovskite materials. The method comprises the steps of: introducing a lead halide and a first solvent to a first vessel and contacting the lead halide with the first solvent to dissolve the lead halide to form a lead halide solution, introducing a Group 1 metal halide a second solvent into a second vessel and contacting the Group 1 metal halide with the second solvent to dissolve the Group 1 metal halide to form a Group 1 metal halide solution, and contacting the lead halide solution with the Group 1 metal halide solution to form a thin-film precursor ink. The method further comprises depositing the thin-film precursor ink onto a substrate, drying the thin-film precursor ink to form a thin film, annealing the thin film; and rinsing the thin film with a salt solution.
    Type: Grant
    Filed: March 7, 2022
    Date of Patent: April 9, 2024
    Assignee: CubicPV Inc.
    Inventors: Michael D. Irwin, Kamil Mielczarek, Vivek V. Dhas
  • Publication number: 20240008295
    Abstract: A method for preparing photoactive perovskite materials. The method comprises the steps of preparing a lead and tin halide precursor ink.
    Type: Application
    Filed: September 18, 2023
    Publication date: January 4, 2024
    Inventors: Michael D. Irwin, Jerred A. Chute, Vivek V. Dhas
  • Patent number: 11800726
    Abstract: A method for preparing photoactive perovskite materials. The method comprises the steps of preparing a bismuth halide precursor ink. Preparing a bismuth halide precursor ink comprises the steps of introducing a bismuth halide into a vessel; introducing a first solvent to the vessel; and contacting the bismuth halide with the first solvent to dissolve the bismuth halide to form the bismuth halide precursor ink; depositing the bismuth halide precursor ink onto a substrate; drying the bismuth halide precursor ink to form a thin film; annealing the thin film; and rinsing the thin film with a solvent comprising: a second solvent; a first salt selected from the group consisting of methylammonium halide, formamidinimum halide, guanidinium halide, 1,2,2-triaminovinylammonium halide, and 5-aminovaleric acid hydrohalide; and a second salt selected from the group consisting of methylammonium halide, formamidinimum halide, guanidinium halide, 1,2,2-triaminovinylammonium halide, and 5-aminovaleric acid hydrohalide.
    Type: Grant
    Filed: October 20, 2022
    Date of Patent: October 24, 2023
    Assignee: CubicPV Inc.
    Inventors: Michael D. Irwin, Jerred A. Chute, Vivek V. Dhas
  • Publication number: 20230167326
    Abstract: A method including depositing a lead halide precursor ink onto a substrate; drying the lead halide precursor ink to form a first thin film; annealing the first thin film; and forming a perovskite material layer, wherein forming the perovskite material layer includes: depositing a benzylammonium halide precursor ink onto the first thin film; drying the benzylammonium halide precursor ink; depositing a formamidinium halide precursor ink onto the benzylammonium halide precursor ink; drying the formamidinium halide precursor ink to form a second thin film; and annealing the second thin film.
    Type: Application
    Filed: November 28, 2022
    Publication date: June 1, 2023
    Inventors: Michael D. Irwin, Minh Tu Nguyen, Vivek V. Dhas, Erin Senehira, Marissa Mitchell
  • Patent number: 11508924
    Abstract: A method for preparing photoactive perovskite materials. The method comprises the step of preparing a germanium halide precursor ink. Preparing a germanium halide precursor ink comprises the steps of: introducing a germanium halide into a vessel, introducing a first solvent to the vessel, and contacting the germanium halide with the first solvent to dissolve the germanium halide. The method further comprises depositing the germanium halide precursor ink onto a substrate, drying the germanium halide precursor ink to form a thin film, annealing the thin film, and rinsing the thin film with a second solvent and a salt.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: November 22, 2022
    Assignee: CubicPV Inc.
    Inventors: Michael D. Irwin, Jerred A. Chute, Vivek V. Dhas
  • Publication number: 20220187695
    Abstract: A method for preparing photoactive perovskite materials. The method comprises the steps of: introducing a lead halide and a first solvent to a first vessel and contacting the lead halide with the first solvent to dissolve the lead halide to form a lead halide solution, introducing a Group 1 metal halide a second solvent into a second vessel and contacting the Group 1 metal halide with the second solvent to dissolve the Group 1 metal halide to form a Group 1 metal halide solution, and contacting the lead halide solution with the Group 1 metal halide solution to form a thin-film precursor ink. The method further comprises depositing the thin-film precursor ink onto a substrate, drying the thin-film precursor ink to form a thin film, annealing the thin film; and rinsing the thin film with a salt solution.
    Type: Application
    Filed: March 7, 2022
    Publication date: June 16, 2022
    Inventors: Michael D. Irwin, Kamil Mielczarek, Vivek V. Dhas
  • Patent number: 11300870
    Abstract: A method for preparing photoactive perovskite materials. The method comprises the steps of: introducing a lead halide and a first solvent to a first vessel and contacting the lead halide with the first solvent to dissolve the lead halide to form a lead halide solution, introducing a Group 1 metal halide a second solvent into a second vessel and contacting the Group 1 metal halide with the second solvent to dissolve the Group 1 metal halide to form a Group 1 metal halide solution, and contacting the lead halide solution with the Group 1 metal halide solution to form a thin-film precursor ink. The method further comprises depositing the thin-film precursor ink onto a substrate, drying the thin-film precursor ink to form a thin film, annealing the thin film; and rinsing the thin film with a salt solution.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: April 12, 2022
    Assignee: CUBICPV INC.
    Inventors: Michael D. Irwin, Kamil Mielczarek, Vivek V. Dhas
  • Publication number: 20220033658
    Abstract: Photovoltaic devices such as solar cells, hybrid solar cell-batteries, and other such devices may include an active layer disposed between two electrodes. The active layer may have perovskite material and other material such as mesoporous material, interfacial layers, thin-coat interfacial layers, and combinations thereof. The perovskite material may be photoactive. The perovskite material may be disposed between two or more other materials in the photovoltaic device. Inclusion of these materials in various arrangements within an active layer of a photovoltaic device may improve device performance. Other materials may be included to further improve device performance, such as, for example: additional perovskites, and additional interfacial layers.
    Type: Application
    Filed: October 20, 2021
    Publication date: February 3, 2022
    Inventors: Michael D. Irwin, Jerred A. Chute, Vivek V. Dhas, Kamil Mielczarek
  • Patent number: 11180660
    Abstract: Photovoltaic devices such as solar cells, hybrid solar cell-batteries, and other such devices may include an active layer disposed between two electrodes. The active layer may have perovskite material and other material such as mesoporous material, interfacial layers, thin-coat interfacial layers, and combinations thereof. The perovskite material may be photoactive. The perovskite material may be disposed between two or more other materials in the photovoltaic device. Inclusion of these materials in various arrangements within an active layer of a photovoltaic device may improve device performance. Other materials may be included to further improve device performance, such as, for example: additional perovskites, and additional interfacial layers.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: November 23, 2021
    Assignee: CUBIC PEROVSKITE LLC
    Inventors: Michael D. Irwin, Jerred A. Chute, Vivek V. Dhas, Kamil Mielczarek
  • Publication number: 20210280801
    Abstract: Photovoltaic devices such as solar cells, hybrid solar cell-batteries, and other such devices may include an active layer disposed between two electrodes, the active layer having perovskite material and other material such as mesoporous material, interfacial layers, thin-coat interfacial layers, and combinations thereof. The perovskite material may be photoactive. The perovskite material may be disposed between two or more other materials in the photovoltaic device. Inclusion of these materials in various arrangements within an active layer of a photovoltaic device may improve device performance. Other materials may be included to further improve device performance, such as, for example: additional perovskites, and additional interfacial layers.
    Type: Application
    Filed: May 20, 2021
    Publication date: September 9, 2021
    Inventors: Michael D. Irwin, Vivek V. Dhas
  • Patent number: 11024814
    Abstract: Photovoltaic devices such as solar cells, hybrid solar cell-batteries, and other such devices may include an active layer disposed between two electrodes, the active layer having perovskite material and other material such as mesoporous material, interfacial layers, thin-coat interfacial layers, and combinations thereof. The perovskite material may be photoactive. The perovskite material may be disposed between two or more other materials in the photovoltaic device. Inclusion of these materials in various arrangements within an active layer of a photovoltaic device may improve device performance. Other materials may be included to further improve device performance, such as, for example: additional perovskites, and additional interfacial layers.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: June 1, 2021
    Assignee: Hunt Perovskite Technologies, L.L.C.
    Inventors: Michael D. Irwin, Vivek V. Dhas
  • Publication number: 20200358436
    Abstract: A method for preparing photoactive perovskite materials. The method comprises the step of preparing a germanium halide precursor ink. Preparing a germanium halide precursor ink comprises the steps of: introducing a germanium halide into a vessel, introducing a first solvent to the vessel, and contacting the germanium halide with the first solvent to dissolve the germanium halide. The method further comprises depositing the germanium halide precursor ink onto a substrate, drying the germanium halide precursor ink to form a thin film, annealing the thin film, and rinsing the thin film with a second solvent and a salt.
    Type: Application
    Filed: July 27, 2020
    Publication date: November 12, 2020
    Inventors: Michael D. Irwin, Jerred A. Chute, Vivek V. Dhas
  • Publication number: 20200257190
    Abstract: A method for preparing photoactive perovskite materials. The method comprises the steps of: introducing a lead halide and a first solvent to a first vessel and contacting the lead halide with the first solvent to dissolve the lead halide to form a lead halide solution, introducing a Group 1 metal halide a second solvent into a second vessel and contacting the Group 1 metal halide with the second solvent to dissolve the Group 1 metal halide to form a Group 1 metal halide solution, and contacting the lead halide solution with the Group 1 metal halide solution to form a thin-film precursor ink. The method further comprises depositing the thin-film precursor ink onto a substrate, drying the thin-film precursor ink to form a thin film, annealing the thin film; and rinsing the thin film with a salt solution.
    Type: Application
    Filed: April 27, 2020
    Publication date: August 13, 2020
    Inventors: Michael D. Irwin, Kamil Mielczarek, Vivek V. Dhas
  • Patent number: 10741779
    Abstract: A method for preparing photoactive perovskite materials. The method comprises the step of preparing a lead halide precursor ink. Preparing a lead halide precursor ink comprises the steps of: introducing a lead halide into a vessel, introducing a first solvent to the vessel, and contacting the lead halide with the first solvent to dissolve the lead halide. The method further comprises depositing the lead halide precursor ink onto a substrate, drying the lead halide precursor ink to form a thin film, annealing the thin film, and rinsing the thin film with a second solvent and a salt.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: August 11, 2020
    Assignee: Hunt Perovskite Technologies, L.L.C.
    Inventors: Michael D. Irwin, Jerred A. Chute, Vivek V. Dhas
  • Patent number: 10642147
    Abstract: A method for preparing photoactive perovskite materials. The method comprises the steps of: introducing a lead halide and a first solvent to a first vessel and contacting the lead halide with the first solvent to dissolve the lead halide to form a lead halide solution, introducing a Group 1 metal halide a second solvent into a second vessel and contacting the Group 1 metal halide with the second solvent to dissolve the Group 1 metal halide to form a Group 1 metal halide solution, and contacting the lead halide solution with the Group 1 metal halide solution to form a thin-film precursor ink. The method further comprises depositing the thin-film precursor ink onto a substrate, drying the thin-film precursor ink to form a thin film, annealing the thin film; and rinsing the thin film with a salt solution.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: May 5, 2020
    Assignee: Hunt Perovskite Technologies LLC
    Inventors: Michael D. Irwin, Kamil Mielczarek, Vivek V. Dhas
  • Patent number: 10608190
    Abstract: Photovoltaic devices such as solar cells, hybrid solar cell-batteries, and other such devices may include an active layer disposed between two electrodes, the active layer having perovskite material and other material such as mesoporous material, interfacial layers, thin-coat interfacial layers, and combinations thereof. The perovskite material may be photoactive. The perovskite material may be disposed between two or more other materials in the photovoltaic device. Inclusion of these materials in various arrangements within an active layer of a photovoltaic device may improve device performance. Other materials may be included to further improve device performance, such as, for example: additional perovskites, and additional interfacial layers.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: March 31, 2020
    Assignee: Hee Solar, L.L.C.
    Inventors: Michael D. Irwin, Vivek V. Dhas
  • Publication number: 20190292375
    Abstract: Photovoltaic devices such as solar cells, hybrid solar cell-batteries, and other such devices may include an active layer disposed between two electrodes. The active layer may have perovskite material and other material such as mesoporous material, interfacial layers, thin-coat interfacial layers, and combinations thereof. The perovskite material may be photoactive. The perovskite material may be disposed between two or more other materials in the photovoltaic device. Inclusion of these materials in various arrangements within an active layer of a photovoltaic device may improve device performance. Other materials may be included to further improve device performance, such as, for example: additional perovskites, and additional interfacial layers.
    Type: Application
    Filed: June 10, 2019
    Publication date: September 26, 2019
    Inventors: Michael D. Irwin, Jerred A. Chute, Vivek V. Dhas, Kamil Mielczarek
  • Patent number: 10333082
    Abstract: Photovoltaic devices such as solar cells, hybrid solar cell-batteries, and other such devices may include an active layer disposed between two electrodes, the active layer having perovskite material and other material such as mesoporous material, interfacial layers, thin-coat interfacial layers, and combinations thereof. The perovskite material may be photoactive. The perovskite material may be disposed between two or more other materials in the photovoltaic device. Inclusion of these materials in various arrangements within an active layer of a photovoltaic device may improve device performance. Other materials may be included to further improve device performance, such as, for example: additional perovskites, and additional interfacial layers.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: June 25, 2019
    Assignee: HEE Solar, L.L.C.
    Inventors: Michael D. Irwin, Vivek V. Dhas
  • Patent number: 10316196
    Abstract: Photovoltaic devices such as solar cells, hybrid solar cell-batteries, and other such devices may include an active layer disposed between two electrodes. The active layer may have perovskite material and other material such as mesoporous material, interfacial layers, thin-coat interfacial layers, and combinations thereof. The perovskite material may be photoactive. The perovskite material may be disposed between two or more other materials in the photovoltaic device. Inclusion of these materials in various arrangements within an active layer of a photovoltaic device may improve device performance. Other materials may be included to further improve device performance, such as, for example: additional perovskites, and additional interfacial layers.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: June 11, 2019
    Assignee: HEE Solar, L.L.C.
    Inventors: Michael D. Irwin, Jerred A. Chute, Vivek V. Dhas, Kamil Mielczarek