Patents by Inventor Vladimir Marko Stojanovic

Vladimir Marko Stojanovic has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11988938
    Abstract: An optical modulator is disclosed that includes an optical resonator structure. The optical resonator structure includes at least one non-linear portion, the at least one non-linear portion comprising at least one radial junction region. The at least one radial junction region is formed between at least first and second materials, respectively, having different electronic conductivity characteristics. A principal axis of the at least one radial junction region is oriented along a radius of curvature of the at least one non-linear portion. The optical modulator includes an optical waveguide that is coupled to the at least one non-linear portion of the optical resonator structure.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: May 21, 2024
    Assignees: Massachusetts Institute of Technology, University of Colorado
    Inventors: Milos A. Popovic, Jeffrey Michael Shainline, Jason Orcutt, Vladimir Marko Stojanovic
  • Publication number: 20210373413
    Abstract: An optical modulator is disclosed that includes an optical resonator structure. The optical resonator structure includes at least one non-linear portion, the at least one non-linear portion comprising at least one radial junction region. The at least one radial junction region is formed between at least first and second materials, respectively, having different electronic conductivity characteristics. A principal axis of the at least one radial junction region is oriented along a radius of curvature of the at least one non-linear portion. The optical modulator includes an optical waveguide that is coupled to the at least one non-linear portion of the optical resonator structure.
    Type: Application
    Filed: April 26, 2021
    Publication date: December 2, 2021
    Inventors: Milos A. Popovic, Jeffrey Michael Shainline, Jason Orcutt, Vladimir Marko Stojanovic
  • Patent number: 10996538
    Abstract: An optical modulator is disclosed that includes an optical resonator structure. The optical resonator structure includes at least one non-linear portion, the at least one non-linear portion comprising at least one radial junction region. The at least one radial junction region is formed between at least first and second materials, respectively, having different electronic conductivity characteristics. A principal axis of the at least one radial junction region is oriented along a radius of curvature of the at least one non-linear portion. The optical modulator includes an optical waveguide that is coupled to the at least one non-linear portion of the optical resonator structure.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: May 4, 2021
    Assignees: Massachusetts Institute of Technology, University of Colorado
    Inventors: Milos A. Popovic, Jeffrey Michael Shainline, Jason Scott Orcutt, Vladimir Marko Stojanovic
  • Patent number: 10587344
    Abstract: Devices and techniques for integrated optical data communication. A method of encoding symbols in an optical signal may include encoding a first symbol by injecting charge carriers, at a first rate, into a semiconductor device, such as a PIN diode. The method may also include encoding a second symbol by injecting charge carriers, at a second rate, into the semiconductor device. The first rate may exceed the second rate. A modulator driver circuit may include a resistive circuit coupled between supply terminal and drive terminals. The modulator driver circuit may also include a control circuit coupled between a data terminal and the resistive circuit. The control circuit may modulate a resistance of the resistive circuit by selectively coupling one or more of a plurality of portions of the resistive circuit to the drive terminal based on data to be optically encoded.
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: March 10, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Benjamin Roy Moss, Jason Scott Orcutt, Vladimir Marko Stojanovic
  • Patent number: 10514509
    Abstract: An optical coupler has a waveguide coupled to a grating of multiple scattering units, each scattering unit having a first scattering element formed of a shape in a polysilicon gate layer and a second scattering element formed of a shape in a body silicon layer of a metal-oxide-semiconductor (MOS) integrated circuit (IC). The couplers may be used in a system having a coupler on each of a first and second IC, infrared light being formed into a beam passing between the couplers. Vias may be interposed in third ICs between the first and second ICs. The couplers may be configured with nonuniform width of scattering elements to produce Gaussian or focused beams.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: December 24, 2019
    Assignees: The Regents of the University of Colorado, a Body Corporate, Massachusetts Institute of Technology
    Inventors: Milos Popovic, Vladimir Marko Stojanovic, Jason Scott Orcutt
  • Publication number: 20190149240
    Abstract: Devices and techniques for integrated optical data communication. A method of encoding symbols in an optical signal may include encoding a first symbol by injecting charge carriers, at a first rate, into a semiconductor device, such as a PIN diode. The method may also include encoding a second symbol by injecting charge carriers, at a second rate, into the semiconductor device. The first rate may exceed the second rate. A modulator driver circuit may include a resistive circuit coupled between supply terminal and drive terminals. The modulator driver circuit may also include a control circuit coupled between a data terminal and the resistive circuit. The control circuit may modulate a resistance of the resistive circuit by selectively coupling one or more of a plurality of portions of the resistive circuit to the drive terminal based on data to be optically encoded.
    Type: Application
    Filed: October 3, 2018
    Publication date: May 16, 2019
    Applicant: Massachusetts Institute of Technology
    Inventors: Benjamin Roy Moss, Jason Scott Orcutt, Vladimir Marko Stojanovic
  • Patent number: 10135539
    Abstract: Devices and techniques for integrated optical data communication. A method of encoding symbols in an optical signal may include encoding a first symbol by injecting charge carriers, at a first rate, into a semiconductor device, such as a PIN diode. The method may also include encoding a second symbol by injecting charge carriers, at a second rate, into the semiconductor device. The first rate may exceed the second rate. A modulator driver circuit may include a resistive circuit coupled between supply terminal and drive terminals. The modulator driver circuit may also include a control circuit coupled between a data terminal and the resistive circuit. The control circuit may modulate a resistance of the resistive circuit by selectively coupling one or more of a plurality of portions of the resistive circuit to the drive terminal based on data to be optically encoded.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: November 20, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Benjamin Roy Moss, Jason Scott Orcutt, Vladimir Marko Stojanovic
  • Patent number: 9768881
    Abstract: Devices and techniques for integrated optical data communication. An optical receiver may include a photodetector and a differential amplifier. The photodetector is coupled to an optical waveguide. The optical waveguide is configured to provide an optical signal encoding data. A first terminal of the differential amplifier is coupled to receive a photodetection signal from the photodetector. A second terminal of the differential amplifier is coupled to receive, from a noise measurement unit, a reference signal representing a noise component of the photodetection signal. The differential amplifier is configured to provide an amplifier signal encoding at least some of the data.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: September 19, 2017
    Assignee: Massachusetts Institute of Technology
    Inventors: Michael Stephen Georgas, Jason Scott Orcutt, Vladimir Marko Stojanovic
  • Patent number: 9595920
    Abstract: Digital compensators for use in outphasing-based power amplification systems (e.g., Linear Amplification using Nonlinear Components (LINC) amplifiers and Asymmetric Multilevel Outphasing (AMO) amplifiers) include a short memory nonlinear portion and a long memory linear time invariant (LTI) portion. In various embodiments, compensators are provided that are of relatively low complexity and that are capable of operation at throughputs exceeding a Gigasample per second.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: March 14, 2017
    Assignee: Massachusette Institute of Technology
    Inventors: Yan Li, Zhipeng Li, Alexandre Megretski, Vladimir Marko Stojanovic, Omer Tanovic, Yehuda Avniel
  • Publication number: 20160139487
    Abstract: An optical modulator is disclosed that includes an optical resonator structure. The optical resonator structure includes at least one non-linear portion, the at least one non-linear portion comprising at least one radial junction region. The at least one radial junction region is formed between at least first and second materials, respectively, having different electronic conductivity characteristics. A principal axis of the at least one radial junction region is oriented along a radius of curvature of the at least one non-linear portion. The optical modulator includes an optical waveguide that is coupled to the at least one non-linear portion of the optical resonator structure.
    Type: Application
    Filed: June 12, 2014
    Publication date: May 19, 2016
    Applicants: Massachusetts Institute of Technology, University of Colorado
    Inventors: Milos A. Popovic, Jeffrey Michael Shainline, Jason Orcutt, Vladimir Marko Stojanovic
  • Patent number: 9252712
    Abstract: Described herein is a fixed-point piece-wise linear (FP PWL) approximation technique for computations of nonlinear functions. The technique results in circuit designs having relatively few and simple arithmetic operations, short arithmetic operands and small-sized look-up tables and the circuits resultant there from can be efficiently pipelined to run at multi-GSamples/s throughputs. In one exemplary embodiment, the FP PWL approximation technique was used in the design of an energy-efficient high-throughput and high-precision signal component separator (SCS) for use with in an asymmetric-multilevel-outphasing (AMO) power amplifier. The FP PWL approximation technique is appropriate for use in any application requiring high-throughput, area and power constrained hardware implementations of nonlinear functions.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: February 2, 2016
    Assignee: Massachusetts Institute of Technology
    Inventors: Yan Li, Zhipeng Li, Yehuda Avniel, Alexandre Megretski, Vladimir Marko Stojanovic
  • Publication number: 20160013867
    Abstract: Devices and techniques for integrated optical data communication. A method of encoding symbols in an optical signal may include encoding a first symbol by injecting charge carriers, at a first rate, into a semiconductor device, such as a PIN diode. The method may also include encoding a second symbol by injecting charge carriers, at a second rate, into the semiconductor device. The first rate may exceed the second rate. A modulator driver circuit may include a resistive circuit coupled between supply terminal and drive terminals. The modulator driver circuit may also include a control circuit coupled between a data terminal and the resistive circuit. The control circuit may modulate a resistance of the resistive circuit by selectively coupling one or more of a plurality of portions of the resistive circuit to the drive terminal based on data to be optically encoded.
    Type: Application
    Filed: February 15, 2013
    Publication date: January 14, 2016
    Applicant: Massachusetts Institute of Technology
    Inventors: Benjamin Roy Moss, Jason Scott Orcutt, Vladimir Marko Stojanovic
  • Publication number: 20150357975
    Abstract: Digital compensators for use in outphasing-based power amplification systems (e.g., Linear Amplification using Nonlinear Components (LINC) amplifiers and Asymmetric Multilevel Outphasing (AMO) amplifiers) include a short memory nonlinear portion and a long memory linear time invariant (LTI) portion. In various embodiments, compensators are provided that are of relatively low complexity and that are capable of operation at throughputs exceeding a Gigasample per second.
    Type: Application
    Filed: March 13, 2014
    Publication date: December 10, 2015
    Inventors: Yehuda AVNIEL, Yan LI, Zhipeng LI, Alexandre MEGRETSKI, Vladimir Marko STOJANOVIC, Omer TANOVIC
  • Publication number: 20150311982
    Abstract: Devices and techniques for integrated optical data communication. An optical receiver may include a photodetector and a differential amplifier. The photodetector is coupled to an optical waveguide. The optical waveguide is configured to provide an optical signal encoding data. A first terminal of the differential amplifier is coupled to receive a photodetection signal from the photodetector. A second terminal of the differential amplifier is coupled to receive, from a noise measurement unit, a reference signal representing a noise component of the photodetection signal. The differential amplifier is configured to provide an amplifier signal encoding at least some of the data.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 29, 2015
    Applicant: Massachusetts Institute of Technology
    Inventors: Michael Stephen Georgas, Jason Scott Orcutt, Vladimir Marko Stojanovic
  • Publication number: 20150124907
    Abstract: Described herein is a fixed-point piece-wise linear (FP PWL) approximation technique for computations of nonlinear functions. The technique results in circuit designs having relatively few and simple arithmetic operations, short arithmetic operands and small-sized look-up tables and the circuits resultant there from can be efficiently pipelined to run at multi-GSamples/s throughputs. In one exemplary embodiment, the FP PWL approximation technique was used in the design of an energy-efficient high-throughput and high-precision signal component separator (SCS) for use with in an asymmetric-multilevel-outphasing (AMO) power amplifier. The FP PWL approximation technique is appropriate for use in any application requiring high-throughput, area and power constrained hardware implementations of nonlinear functions.
    Type: Application
    Filed: May 5, 2013
    Publication date: May 7, 2015
    Applicant: Massachusetts Institute of Technology
    Inventors: Yan Li, Zhipeng Li, Yehuda Avniel, Alexandre Megretski, Vladimir Marko Stojanovic