Patents by Inventor Vladimir Yankov

Vladimir Yankov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10168668
    Abstract: A method of forming a rarefied hologram for video imaging and 3D lithography by using an MEMS/SLM with a plurality of pixels on the surface at a fixed distance from the retina of the viewer' eye. The method consists of providing an initial desired image, which has to be holographically reproduced by the MEMS/SLM as a remote virtual 3D image visible by the viewer's eye. The desired image is coded in a special manner and mapped by encoding and calculating only a part of the initial desired image. The operations of the pixels are controlled in accordance with the code for generation of the holographic pattern. Since only a part of a holographic pattern of the image is encoded and calculated, it becomes possible to reduce the calculation time and decrease parasitic light scattering.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: January 1, 2019
    Inventors: Vladimir Yankov, Konstantin Kravtsov, Leonid Velikov
  • Publication number: 20180173159
    Abstract: A method of forming a rarefied hologram for video imaging and 3D lithography by using an MEMS/SLM with a plurality of pixels on the surface at a fixed distance from the retina of the viewer? eye. The method consists of providing an initial desired image, which has to be holographically reproduced by the MEMS/SLM as a remote virtual 3D image visible by the viewer's eye. The desired image is coded in a special manner and mapped by encoding and calculating only a part of the initial desired image. The operations of the pixels are controlled in accordance with the code for generation of the holographic pattern. Since only a part of a holographic pattern of the image is encoded and calculated, it becomes possible to reduce the calculation time and decrease parasitic light scattering.
    Type: Application
    Filed: December 21, 2016
    Publication date: June 21, 2018
    Inventors: Vladimir Yankov, Konstantin Kravtsov, Leonid Velikov
  • Publication number: 20160077353
    Abstract: Proposed is a method of laser illumination with reduced speckling for in optical microscopy, machine vision systems with laser illumination, fine optical metrology, etc. The method comprises forming a net of planar ridge waveguides into an arbitrary configuration and providing them with a plurality of holograms having holographic elements formed into a predetermined organization defined by the shape of a given light spot or light field which is to be formed by light beams emitted from the holograms on the surface of the object or in a space at a distance from the planar ridge waveguide. Speckling is reduced by locating at least a part or all of the holograms at distances from each other that are equal to or greater than the coherence length. The geometry and organization of the holographic elements allows controlling position, focusing and defocusing of the beam.
    Type: Application
    Filed: September 11, 2014
    Publication date: March 17, 2016
    Inventors: Vladimir Yankov, Ignor Ivonin, Konstantin Kravtsov, Leonid Velikov
  • Patent number: 9164219
    Abstract: The frontlight unit is intended for enhancing illumination of a reflective display having pixels arranged in a matrix pattern and using monochromatic laser lights as light sources. The unit contains a network of light-distribution planar ridge waveguides with holograms arranged in a matrix pattern that corresponds to the matrix pattern of the reflective display when it is applied onto this display and emits light in the downward direction in the form of diverging beams that fall onto the pixels of the reflective display and in the upward direction onto mirrors wherefrom light is reflected also in the form of diverging beams onto the reflective display. Thus, all of the light reflected from the holograms of the light-distribution planar ridge waveguides is not lost and is used entirely for illumination of the reflective display. The mirrors occupy no more than 5% of the display surface area.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: October 20, 2015
    Assignee: NANO-OPTIC DEVICES, LLC
    Inventors: Vladimir Yankov, Igor Ivonin, Leonid Velikov
  • Patent number: 9143235
    Abstract: The invention provides optical interconnects of data-processing cores of multicore chips by means of digital planar holographic microchips on a host chip. The device comprises “N” laser light sources that generate lights of “N” different wavelength and “N” data-processing cores that produce data. Each data-processing core contains optical signal receivers and modulators/transceivers that receive lights from the laser light sources and have a function of modulating the light obtained from the laser light sources with the data produced by the cores thus producing modulated light signals which are further processed by the holographic microchip and then decoded by the receivers. The device is efficient in that it replaces electrical interconnects between the cores with optical interconnects and can be matched to current semiconductor production technology.
    Type: Grant
    Filed: October 14, 2012
    Date of Patent: September 22, 2015
    Assignee: NANO-OPTIC DEVICES LLC
    Inventors: Vladimir Yankov, Konstantin Kravtsov, Leonid Velikov
  • Patent number: 9069414
    Abstract: Proposed is a touchscreen sensor for touchscreen devices such as iPhones, iPads, etc. The sensor comprises a substrate that supports an IR laser light source that transmits light to a light-delivery ridge waveguide formed on one side of the substrate and an array of photoreceivers on the opposite side of the substrate. The light-delivery waveguide and the photoreceivers of the array are interconnected by a plurality of strip-like illumination waveguides that are divided by touch-sensitive detectors into input and output waveguides. The touch-sensitive detectors are distributed under the external plate with a density that changes optical conditions of the touch-sensitive optical detector when an object, e.g., a finger, touches the external plate. The place of contact is detected and is then used to activate the appropriate command.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: June 30, 2015
    Assignee: NANO-OPTIC DEVICES, LLC
    Inventor: Vladimir Yankov
  • Patent number: 9036994
    Abstract: The invention provides optical interconnects of data-processing cores of multicore chips by means of digital planar holographic microchips. The method comprises delivering “N” laser lights to “N” data-processing cores on the host chip, coding the obtained optical signals by modulating them with the core-generated data, and then delivering the modulated and coded optical signals to a holographic microchip formed on the same substrate of the host chip as the data-processing cores, splitting the modulated and coded optical signals into (N?1)N modulated optical copy signals, delivering the copy signals to all data-processing cores except the one that generates the copy signals, and decoding the data obtained from the output signals delivered to the processing cores by the receivers. The method is efficient in that it allows replacing electrical interconnects between the cores with optical interconnects and can be matched to current semiconductor production technology.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: May 19, 2015
    Assignee: NANO-OPTIC DEVICES, LLC
    Inventors: Vladimir Yankov, Konstantin Kravtsov, Leonid Velikov
  • Patent number: 8870382
    Abstract: Disclosed is a method for reducing speckling in liquid crystal displays with coherent illumination. The method consists of providing a liquid-crystal display illuminated, e.g., with a laser light, in which the image is formed by passing the light through the light redirecting holographic elements arranged in a matrix pattern, then changing the direction of the beams emitted from the holographic elements by passing the emitted beams through the polarization-changing liquid crystal elements, and converting the image-carrying beams produced by the liquid crystal elements into a visible image by passing them to a viewer through a polarization analyzer.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: October 28, 2014
    Inventors: Vladimir Yankov, Alexander Goltsov, Igor Ivonin, Konstantin Kravtsov, Leonid Velikov
  • Patent number: 8861057
    Abstract: Proposed is a speckle-reduced laser illumination device that may be used in optical microscopy, machine vision systems with laser illumination, fine optical metrology, etc. The device comprises a net of planar ridge waveguides formed into an arbitrary configuration and having a plurality of holograms with holographic elements formed into a predetermined organization defined by the shape of a given light spot or light field which is to be formed by light beams emitted from holograms on the surface of an object or in a space and at a distance from the planar ridge waveguide. Speckling is reduced due to the fact that at least a part or all of the holograms are spaced from each other at distances equal to or greater than the coherence length. The geometry and organization of the holographic elements allow position control of the light spot and beam converging and diverging.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: October 14, 2014
    Assignee: Ergophos, LLC
    Inventors: Vladimir Yankov, Igor Ivonin, Alexander Goltsov, Konstantin Kravtsov, Leonid Velikov
  • Patent number: 8854710
    Abstract: Proposed is a method of laser illumination with reduced speckling for in optical microscopy, machine vision systems with laser illumination, fine optical metrology, etc. The method comprises forming a net of planar ridge waveguides into an arbitrary configuration and providing them with a plurality of holograms having holographic elements formed into a predetermined organization defined by the shape of a given light spot or light field which is to be formed by light beams emitted from the holograms on the surface of the object or in a space at a distance from the planar ridge waveguide. Speckling is reduced by locating at least a part or all of the holograms at distances from each other that are equal to or greater than the coherence length. The geometry and organization of the holographic elements allows controlling position, focusing and defocusing of the beam.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: October 7, 2014
    Assignee: Ergophos, LLC
    Inventors: Vladimir Yankov, Igor Ivonin, Alexander Goltsov, Konstantin Kravtsov, Leonid Velikov
  • Patent number: 8797620
    Abstract: This invention relates to autostereoscopic display assemblies, in particular for hand-held devices such as tablets, i-Pads, mobile phones, etc., wherein a stereoscopic effect is achieved by forming light beams are emitted from the display at different angles and with different polarization. The display assembly comprises a sandwiched structure consisting of a light-guide panel and a modified liquid-crystal display that is applied onto the light-guide panel. The panel has on its outer surface a net of light waveguides for delivery of light from the light source and for uniform distribution of light over the entire surface of the display. The different polarizations and angular directions of the beams perceived differently by a viewer's left and right eyes are achieved by providing the light-distribution waveguides with holograms of two different types.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: August 5, 2014
    Assignee: Ergophos, LLC
    Inventors: Vladimir Yankov, Alexander Goltsov, Igor Ivonin, Konstantin Kravtsov, Leonid Velikov
  • Patent number: 8773613
    Abstract: Disclosed is a liquid-crystal display with coherent illumination. The display has a multilayered matrix structure comprising a matrix of micromirrors, lightguide panel with a matrix of holographic elements, a liquid-crystal matrix containing a plurality of liquid-crystal cells and a polarization analyzer. The micromirrors perform reciprocating linear or tilting movements. Therefore, in each current moment, the speckle pattern of the image shifts relative to the preceding pattern so that in each current moment the viewer sees an image in different micropositions, which are perceptible by the human eye as a quasistationary pattern. As a result, the speckle pattern seen by the viewer is smoothened.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: July 8, 2014
    Assignee: Ergophos, LLC
    Inventors: Vladimir Yankov, Alexander Goltsov, Igor Ivonin, Konstantin Kravtsov, Leonid Velikov
  • Publication number: 20140105611
    Abstract: The invention provides optical interconnects of data-processing cores of multicore chips by means of digital planar holographic microchips on a host chip. The device comprises “N” laser light sources that generate lights of “N” different wavelength and “N” data-processing cores that produce data. Each data-processing core contains optical signal receivers and modulators/transceivers that receive lights from the laser light sources and have a function of modulating the light obtained from the laser light sources with the data produced by the cores thus producing modulated light signals which are further processed by the holographic microchip and then decoded by the receivers. The device is efficient in that it replaces electrical interconnects between the cores with optical interconnects and can be matched to current semiconductor production technology.
    Type: Application
    Filed: October 14, 2012
    Publication date: April 17, 2014
    Inventors: Vladimir YANKOV, Konstantin Kravtsov, Leonid Velikov
  • Publication number: 20140105613
    Abstract: The invention provides optical interconnects of data-processing cores of multicore chips by means of digital planar holographic microchips. The method comprises delivering “N” laser lights to “N” data-processing cores on the host chip, coding the obtained optical signals by modulating them with the core-generated data, and then delivering the modulated and coded optical signals to a holographic microchip formed on the same substrate of the host chip as the data-processing cores, splitting the modulated and coded optical signals into (N-1)N modulated optical copy signals, delivering the copy signals to all data-processing cores except the one that generates the copy signals, and decoding the data obtained from the output signals delivered to the processing cores by the receivers. The method is efficient in that it allows replacing electrical interconnects between the cores with optical interconnects and can be matched to current semiconductor production technology.
    Type: Application
    Filed: October 11, 2012
    Publication date: April 17, 2014
    Inventors: Vladimir Yankov, Konstantin KRAVTSOV, Leonid VELIKOV
  • Publication number: 20140035878
    Abstract: Proposed is a touchscreen sensor for touchscreen devices such as iPhones, iPads, etc. The sensor comprises a substrate that supports an IR laser light source that transmits light to a light-delivery ridge waveguide formed on one side of the substrate and an array of photoreceivers on the opposite side of the substrate. The light-delivery waveguide and the photoreceivers of the array are interconnected by a plurality of strip-like illumination waveguides that are divided by touch-sensitive detectors into input and output waveguides. The touch-sensitive detectors are distributed under the external plate with a density that changes optical conditions of the touch-sensitive optical detector when an object, e.g., a finger, touches the external plate. The place of contact is detected and is then used to activate the appropriate command.
    Type: Application
    Filed: August 2, 2012
    Publication date: February 6, 2014
    Inventor: Vladimir YANKOV
  • Publication number: 20140002876
    Abstract: Proposed is a method of laser illumination with reduced speckling for in optical microscopy, machine vision systems with laser illumination, fine optical metrology, etc. The method comprises forming a net of planar ridge waveguides into an arbitrary configuration and providing them with a plurality of holograms having holographic elements formed into a predetermined organization defined by the shape of a given light spot or light field which is to be formed by light beams emitted from the holograms on the surface of the object or in a space at a distance from the planar ridge waveguide. Speckling is reduced by locating at least a part or all of the holograms at distances from each other that are equal to or greater than the coherence length. The geometry and organization of the holographic elements allows controlling position, focusing and defocusing of the beam.
    Type: Application
    Filed: June 27, 2012
    Publication date: January 2, 2014
    Inventors: Vladimir Yankov, Igor Ivonin, Alexander Goltsov, Konstantin Kravtsov, Leonid Velikov
  • Publication number: 20140002875
    Abstract: Proposed is a speckle-reduced laser illumination device that may be used in optical microscopy, machine vision systems with laser illumination, fine optical metrology, etc. The device comprises a net of planar ridge waveguides formed into an arbitrary configuration and having a plurality of holograms with holographic elements formed into a predetermined organization defined by the shape of a given light spot or light field which is to be formed by light beams emitted from holograms on the surface of an object or in a space and at a distance from the planar ridge waveguide. Speckling is reduced due to the fact that at least a part or all of the holograms are spaced from each other at distances equal to or greater than the coherence length. The geometry and organization of the holographic elements allow position control of the light spot and beam converging and diverging.
    Type: Application
    Filed: June 27, 2012
    Publication date: January 2, 2014
    Inventors: Vladimir YANKOV, Igor IVONIN, Alexander GOLTSOV, Konstantin KRAVTSOV, Leonid VELIKOV
  • Publication number: 20130321779
    Abstract: Disclosed is a method for reducing speckling in liquid crystal displays with coherent illumination. The method consists of providing a liquid-crystal display illuminated, e.g., with a laser light, in which the image is formed by passing the light through the light redirecting holographic elements arranged in a matrix pattern, then changing the direction of the beams emitted from the holographic elements by passing the emitted beams through the polarization-changing liquid crystal elements, and converting the image-carrying beams produced by the liquid crystal elements into a visible image by passing them to a viewer through a polarization analyzer.
    Type: Application
    Filed: May 29, 2012
    Publication date: December 5, 2013
    Inventors: Vladimir YANKOV, Alexander Goltsov, Igor Ivonin, Konstantin Kravtsov, Alexander Goltsov
  • Publication number: 20130321742
    Abstract: Disclosed is a liquid-crystal display with coherent illumination. The display has a multilayered matrix structure comprising a matrix of micromirrors, lightguide panel with a matrix of holographic elements, a liquid-crystal matrix containing a plurality of liquid-crystal cells and a polarization analyzer. The micromirrors perform reciprocating linear or tilting movements. Therefore, in each current moment, the speckle pattern of the image shifts relative to the preceding pattern so that in each current moment the viewer sees an image in different micropositions, which are perceptible by the human eye as a quasistationary pattern. As a result, the speckle pattern seen by the viewer is smoothened.
    Type: Application
    Filed: May 29, 2012
    Publication date: December 5, 2013
    Inventors: Vladimir Yankov, Alexander Goltsov, Igor Ivonin, Konstantin Kravtsov, Leonid Velikov
  • Patent number: 8596846
    Abstract: The frontlight illumination system is intended for enhancing illumination of a reflective display having pixels arranged in a matrix pattern and using monochromatic laser lights as light sources. The unit contains a network of light-distributing planar ridge waveguides with holograms arranged in a matrix pattern that corresponds to the matrix pattern of the reflective display. The light-distributing holograms of the system are formed on opposite sides of each core of respective light-distributing planar ridge waveguides. Neighboring holograms located on opposite sides of the core are combined into pairs and are arranged on each core in positions at which they interact with a predetermined phase shift that doubles the intensity of light directed to the reflective display and extinguishes light directed to the external surface.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: December 3, 2013
    Assignee: Nano-Optic Devices, LLC
    Inventors: Vladimir Yankov, Alexander Goltsov, Igor Ivonin, Leonid Velikov