Patents by Inventor Volker C. Behr

Volker C. Behr has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9869674
    Abstract: The invention relates to a method for determining the presence of an analyte by means of a distribution of small magnetic particles. According to said method, the magnetizations of the small particles are oriented in relation to each other by means of an outer magnetic focusing field; once the focussing field has been terminated, the magnetizations of the small particles are rotated asynchronously to the magnetic field by means of an outer magnetic field of suitable field intensity and rotational frequency, which rotates about a longitudinal axis (z); the temporal course of the superpositioned transverse magnetization of the set of particles is detected; and the presence of the analyte is deduced from the detected temporal course. The invention also relates to a corresponding device (1).
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: January 16, 2018
    Assignees: Hochschule für angewandte Wissenschaften Fachhochschule Würzburg-Schweinfurt, Julius-Maximilians-Universität-Würzburg
    Inventors: Martin Rueckert, Volker C. Behr, Thomas Kampf
  • Patent number: 9488649
    Abstract: The invention relates to a method for imaging from a distribution of small magnetic particles. According to said method, the magnetisation of the small particles is rotated asynchronously to the magnetic field by means of an outer magnetic field of suitable field intensity and rotational frequency, which rotates about a longitudinal axis (z), whereby an asynchronous average rotational frequency is generated for a set of particles according to the field intensity; a spatial dependence is impressed on each set of particles by means of a magnetic gradient field of the asynchronous average rotational frequency; the frequency parts of the superpositioned transverse magnetisation (MQ) of the set of particles are detected; and a spatially resolved distribution of the transverse magnetisation (MQ) determines the small particles and emits same by means of the frequency parts. The invention also relates to a suitable device (1).
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: November 8, 2016
    Inventors: Martin Rueckert, Volker C. Behr
  • Publication number: 20130157256
    Abstract: The invention relates to a method for determining the presence of an analyte by means of a distribution of small magnetic particles. According to said method, the magnetisations of the small particles are oriented in relation to each other by means of an outer magnetic focusing field; once the focussing field has been terminated, the magnetisations of the small particles are rotated asynchronously to the magnetic field by means of an outer magnetic field of suitable field intensity and rotational frequency, which rotates about a longitudinal axis (z); the temporal course of the superpositioned transverse magnetisation of the set of particles is detected; and the presence of the analyte is deduced from the detected temporal course. The invention also relates to a corresponding device (1).
    Type: Application
    Filed: April 1, 2011
    Publication date: June 20, 2013
    Applicants: JULIUS-MAXIMILIANS-UNIVERSITAET WUERZBURG, HOCHSCHULE FUER ANGEWANDTE WISSENSCHAFTEN
    Inventors: Martin Rueckert, Volker C. Behr, Thomas Kampf
  • Publication number: 20130079623
    Abstract: The invention relates to a method for imaging from a distribution of small magnetic particles. According to said method, the magnetisation of the small particles is rotated asynchronously to the magnetic field by means of an outer magnetic field of suitable field intensity and rotational frequency, which rotates about a longitudinal axis (z), whereby an asynchronous average rotational frequency is generated for a set of particles according to the field intensity; a spatial dependence is impressed on each set of particles by means of a magnetic gradient field of the asynchronous average rotational frequency; the frequency parts of the superpositioned transverse magnetisation (MQ) of the set of particles are detected; and a spatially resolved distribution of the transverse magnetisation (MQ) determines the small particles and emits same by means of the frequency parts. The invention also relates to a suitable device (1).
    Type: Application
    Filed: April 1, 2011
    Publication date: March 28, 2013
    Applicants: JULIUS-MAXIMILIANS-UNIVERSITAET WUERZBURG, HOCHSCHULE FUER ANGEWANDTE WISSENSCHAFTEN
    Inventors: Martin Rueckert, Volker C. Behr