Patents by Inventor Volodymyr I. Redko

Volodymyr I. Redko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150140231
    Abstract: The present invention is a method and apparatus for applying coatings in a rarefied gaseous medium. A cold cathode electron gun is used to generate an electron beam, which is directed to a crucible containing initial solid materials in a vacuum chamber, thus generating an initial solid material vapor. Nitrogen reaction gas is bled into the vacuum chamber, and ionization of the nitrogen gas in high frequency discharge. Subsequent interaction of initial material vapor with nitrogen ions and atoms results in generation of solid product heating of the substrate. Condensation of the vapor on the surface of substrate generates a thin film of solid electrode or electrolyte. The resulting rate of deposition of thin film of vitreous solid electrolyte and LiPon solid electrolyte is substantially higher than can be achieved with a magnetron sputtering process.
    Type: Application
    Filed: October 20, 2014
    Publication date: May 21, 2015
    Inventors: Elena M Shembel, Valetiy Tutyk, Volodymyr I Redko, Alexandr Markevich, Tymofiy Pastushkin, Irina M Maksyuta
  • Publication number: 20140248440
    Abstract: The invention relates to methods of gas detonation deposition (gas detonation explosion) applying coatings, especially layers of materials for electrochemical devices for use as electrodes in electrochemical energy generation and storage devices such as batteries, supercapacitors, photovoltaic cells, and the like. In the method of the gas detonation deposition the powders of the materials, which are deposited, are subjected to detonation with the explosion products flow. As a result, the powder particles gain a high kinetic energy and are deposited on a substrate, forming a high quality coating.
    Type: Application
    Filed: May 15, 2014
    Publication date: September 4, 2014
    Applicant: ENERIZE CORPORATION
    Inventors: Elena M. SHEMBEL, Nickolai (Mykola) I. KLIUI, Volodymyr I. REDKO, Irina M. MAKSYUTA, Tymofiy V. PASTUSHKIN, Volodymyr P. TEMCHENKO
  • Patent number: 8323838
    Abstract: The invention described the highly conducting amorphous polymer materials which are based on the pure block-type copolymers, which contain polyethylene oxide and other chemically complementary blocks and form the amorphous hydrogen-bonded intramolecular polycomplexes, and those, filled by ion conductive materials, low-molecular-weight organic plasticizer and nanometer-scale inorganic particles. The block-type copolymers are preferably the linear triblock copolymers with a central block of PEO and two side blocks of chemically complementary polyacrylamide (PAAm) or poly(acrylic acid) (PAAc). Due to existence of long side PAAm chains and their interaction with a central crystallizable block of PEO, TBC bulk structure is amorphous and fully homogeneous. It can be represented as a totality of hydrogen-bonded segments of both polymer components, uniformly distributed in PAAm matrix. Presented polymer materials can be used for solid polymer electrolyte for DSSC solar cells and lithium batteries.
    Type: Grant
    Filed: September 12, 2009
    Date of Patent: December 4, 2012
    Assignee: Enerize Corporation
    Inventors: Elena M Shembel, Tatyana B. Zheltonozhskaya, Larisa R. Kunitskaya, Svetlana A. Berkova, Timofiy V Pastushkin, Volodymyr I. Redko, Irina M. Maksyuta, Nataliya M. Permyakova, Alexei YU. Kolendo
  • Patent number: 8309024
    Abstract: A system for non-destructive determination of the degree of fluorination in carbon monofluoride (CFx) during the process of CFx synthesis is described. The system includes a measuring generator containing a capacitive sensor for measuring a respective capacitance, a base generator containing a capacitive sensor for measuring a base capacitance, and a processor for determining a difference between the respective capacitance and the base capacitance. The system is configured to determine the degree of fluorination based on the difference between the respective capacitance and the base capacitance.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: November 13, 2012
    Assignee: Enerize Corporation
    Inventors: Volodymyr I Redko, Elena M Shembel, Volodymyr S Khandetskyy, Dayal T Meshri, Isaac A Angres, Robert Adams, Dmytro Sivtsov, Oxana V Redko, Tymofiy V Pastushkin
  • Patent number: 8284247
    Abstract: The present invention is a method and apparatus for optical detection and size evaluation of through-penetrating defects such as pinholes in moving foil or film. The invention comprises the installation of at least one image capture device at a first given distance over the moving foil surface, placement of at least one elongated light source comprising an infinite number of point-sources that are not in phase, and are emitting light independently from one another under the foil, periodic automatic computer-controlled image capture of the foil surface with image capture devices, automatic transmission of the image captured by each device to a control computer, and processing of the transmitted image data to detect of defect light spot, followed by determination of generalized index of its initial image. This generalize index value is equal to the brightness averaged within the spot multiplied by the area of the spot.
    Type: Grant
    Filed: February 14, 2009
    Date of Patent: October 9, 2012
    Assignee: Enerize Corporation
    Inventors: Volodymyr I Redko, Volodymyr S Khandetskyy, Elena M. Shembel
  • Publication number: 20120235692
    Abstract: A method of non-destructive testing for quality control of powdered materials having dielectric properties based on the use of electromagnetic capacitance techniques.
    Type: Application
    Filed: December 19, 2011
    Publication date: September 20, 2012
    Inventors: Volodymyr I. Redko, Elena M. Shembel, Volodymyr S. Khandetskyy, Dmytro Sivtsov, Tymofiy Pastushkin, Oxana Redko, Bary Wilson
  • Patent number: 8102181
    Abstract: Method and related device intended for rapid non-destructive testing of powdered materials with low electric conductivity such as cement and cement-based compositions through determination of their electrical properties. The invention involves an electromagnetic method, including an electronic circuit for generating an electric field in a capacitance probe that is inserted into the powder to be tested. Electrical properties of powdered materials are determined on the basis of a set of the values for a set of parameters including quality factor (Q-factor), capacitance, dissipation factor, and dielectric permeability of the material. These parameter values can be related to such characteristics as moisture content, particle size, and material composition. The method and device can indicate the differences between the samples with various quantities of unwanted components or reaction products, and the extent of sample aging.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: January 24, 2012
    Assignee: Enerize Corporation
    Inventors: Volodymyr I Redko, Elena M Shembel, Volodymyr S Khandetskyy, Dmytro I Sivtsov, Tymofiy V Pastushkin, Oxana Redko, Bary Wilson
  • Patent number: 7982457
    Abstract: The present invention is a method and an eddy current system for non-contact determination of the resistance between the current lead stripe and the coating during continuous fabrication of chemical power sources such as batteries, supercapacitors, photovoltaic modules and the like. Both the method and the non-destructive test system for practicing the method are described. The method includes placing of an integrated measuring transducer containing two strap-type eddy current probes above the surface of the coating applied to the metallic current lead stripe in the region of the shaft guiding the stripe movement, so that all the points of the operating surface of the transducer being at an equal distance from the stripe surface coating so that the two probes would take measurements on the same area of the coating.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: July 19, 2011
    Assignee: Enerize Corporation
    Inventors: Volodymyr I. Redko, Volodymyr Khandetskyy, Elena M. Shembel, Oxana V. Redko, Peter Novak
  • Publication number: 20110006761
    Abstract: The present invention is a method and an eddy current system for non-contact determination of the resistance between the current lead stripe and the coating during continuous fabrication of chemical power sources such as batteries, supercapacitors, photovoltaic modules and the like. Both the method and the non-destructive test system for practicing the method are described. The method includes placing of an integrated measuring transducer containing two strap-type eddy current probes above the surface of the coating applied to the metallic current lead stripe in the region of the shaft guiding the stripe movement, so that all the points of the operating surface of the transducer being at an equal distance from the stripe surface coating so that the two probes would take measurements on the same area of the coating.
    Type: Application
    Filed: January 15, 2009
    Publication date: January 13, 2011
    Applicant: Enerize Corporation
    Inventors: Volodymyr I. Redko, Volodymyr Khandetskyy, Elena M. Shembel, Oxana V. Redko, Peter Novak
  • Publication number: 20100212402
    Abstract: Method and apparatus for precision non-destructive non-contact control of super small differences of pressure, which is used for non-destructive control of tightness of various products regardless of the method of sealing and the state of the internal volume of products, with the apparatus consisting of a body of the control unit of the device, working and control units, sensitive membrane, transparent window of the control unit, connecting pipes of the control and working chambers, electronic speckle interferometer, the base that is isolated from the vibration, and the electronic processing unit for monitoring results and presenting results on the display. The bending of the membrane characterizes the quality of sealing of the investigated object and is determined by the laser method of non-contact electronic speckle interferometry.
    Type: Application
    Filed: February 16, 2010
    Publication date: August 26, 2010
    Applicant: Enerize Corporation
    Inventors: Volodymyr I. Redko, Yurii V. Sokhach, Elena M. Shembel, Olexandr Kudrevatykh, Tymofiy V. Pastushkin, Vladimir Faustovich Rozhkovskyy, Oxana Red'ko
  • Publication number: 20090267623
    Abstract: The present invention is a method and related automatic system for non-destructive determination of physical-chemical properties of powdered in particular as related to the quality control of powdered materials used in battery industry, for example determination of carbon monofluoride (CFx) degree of fluorination during the process of CFx synthesis.
    Type: Application
    Filed: April 23, 2009
    Publication date: October 29, 2009
    Applicant: Enerize Corporation
    Inventors: Volodymyr I. Redko, Elena M. Shembel, Volodymyr S. Khandetskyy, Dayal T. Meshri, Isaac A. Angres, Robert Adams, Dmytro Sivtsov, Oxana V. Red'ko, Tymofiy V. Pastushkin
  • Publication number: 20090267621
    Abstract: Method and related device intended for rapid non-destructive testing of powdered materials with low electric conductivity such as cement and cement-based compositions through determination of their electrical properties. The invention involves an electromagnetic method, including an electronic circuit for generating an electric field in a capacitance probe that is inserted into the powder to be tested. Electrical properties of powdered materials are determined on the basis of a set of the values for a set of parameters including quality factor (Q-factor), capacitance, dissipation factor, and dielectric permeability of the material. These parameter values can be related to such characteristics as moisture content, particle size, and material composition. The method and device can indicate the differences between the samples with various quantities of unwanted components or reaction products, and the extent of sample ageing.
    Type: Application
    Filed: April 21, 2009
    Publication date: October 29, 2009
    Applicant: Enerize Corporation
    Inventors: Volodymyr I. Redko, Elena M. Shembel, Volodymyr S. Khandetskyy, Dmytro Sivtsov, Tymofiy Pastushkin, Oxana Red'ko, Bary Wallace Wilson
  • Publication number: 20090207244
    Abstract: The present invention is a method and apparatus for optical detection and size evaluation of through-penetrating defects such as pinholes in moving foil or film. The invention comprises the installation of at least one image capture device at a first given distance over the moving foil surface, placement of at least one elongated light source comprising an infinite number of point-sources that are not in phase, and are emitting light independently from one another under the foil, periodic automatic computer-controlled image capture of the foil surface with image capture devices, automatic transmission of the image captured by each device to a control computer, and processing of the transmitted image data to detect of defect light spot, followed by determination of generalized index of its initial image. This generalize index value is equal to the brightness averaged within the spot multiplied by the area of the spot.
    Type: Application
    Filed: February 14, 2009
    Publication date: August 20, 2009
    Applicant: Enerize Corporation
    Inventors: Volodymyr I. Redko, Volodymyr S. Khandetskyy, Elena M. Shembel
  • Publication number: 20090000656
    Abstract: The present invention involves the use of specially formulated polymers into which anti-static and conducting metal additives have been incorporated to create a flexible, optically transparent cover for mechanical protection of the incident light-facing surface of the photovoltaic cells. The polymer coating imparts higher conversion efficiencies to photovoltaic cells and modules and is resistant to the destructive effects of UV. In the preferred embodiment, the surface comprising a flexible optically transparent polymer cover has a relief or “crinkle coat” structure morphology comprising a random set of rounded ridge and valley features that impart higher conversion efficiencies to photovoltaic cells and modules due to a concentration affect. Application of the present invention yields mono-crystalline photovoltaic modules that have conversion efficiencies as high as 20%, or more, as compared to 13-14% for presently available commercial module designs.
    Type: Application
    Filed: April 15, 2008
    Publication date: January 1, 2009
    Applicant: Enerize Corporation
    Inventors: Elena M. Shembel, Aleksandra Shmyryeva, Tamara Todosiichuk, Ludmila Kosyanchuk, Tymofiy V. Pastushkin, Anatoliy Alpatov, Volodymyr I. Redko