Patents by Inventor Voramon Supatarawanich Dheeradhada

Voramon Supatarawanich Dheeradhada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11780020
    Abstract: A method of furnace-less brazing of a substrate is provided. The method includes providing a substrate having a brazing region thereon; disposing braze precursor material containing a nickel powder, an aluminum powder, and a platinum group metal powder on the brazing region; and initiating an exothermic reaction of the braze precursor material such that the exothermic reaction produces a braze material that reaches a braze temperature above the liquidus temperature for the braze material. A braze precursor material is also provided.
    Type: Grant
    Filed: November 30, 2022
    Date of Patent: October 10, 2023
    Assignee: General Electric Company
    Inventors: Voramon Supatarawanich Dheeradhada, Raghavendra Rao Adharapurapu, Juan Borja, Don Mark Lipkin
  • Publication number: 20230108512
    Abstract: A thermal structure for management of thermal energy, the thermal structure including: a first wall structure defining a first cavity; a second wall structure defining a second cavity, the second cavity in fluid communication with the first cavity; and a barrier cavity defined at least in-part by the first wall structure and the second wall structure, wherein the barrier cavity is disposed between the first cavity and the second cavity and includes a pressurized barrier fluid therein or is configured to receive the pressurized barrier fluid during operation of the thermal structure.
    Type: Application
    Filed: October 5, 2021
    Publication date: April 6, 2023
    Inventors: Daniel Jason Erno, William Dwight Gerstler, Biao Fang, Laura Cerully Dial, Voramon Supatarawanich Dheeradhada, Hendrik Pieter Jacobus de Bock
  • Publication number: 20230101214
    Abstract: A method of furnace-less brazing of a substrate is provided. The method includes providing a substrate having a brazing region thereon; disposing braze precursor material containing a nickel powder, an aluminum powder, and a platinum group metal powder on the brazing region; and initiating an exothermic reaction of the braze precursor material such that the exothermic reaction produces a braze material that reaches a braze temperature above the liquidus temperature for the braze material. A braze precursor material is also provided.
    Type: Application
    Filed: November 30, 2022
    Publication date: March 30, 2023
    Inventors: Voramon Supatarawanich Dheeradhada, Raghavendra Rao Adharapurapu, Juan Borja, Don Mark Lipkin
  • Publication number: 20230029806
    Abstract: According to some embodiments, system and methods are provided comprising receiving, via a communication interface of a parameter development module comprising a processor, a defined geometry for one or more parts, wherein the parts are manufactured with an additive manufacturing machine, and wherein a stack is formed from one or more parts; fabricating the one or more parts with the additive manufacturing machine based on a first parameter set; collecting in-situ monitoring data from one or more in-situ monitoring systems of the additive manufacturing machine for one or more parts; determining whether each stack should receive an additional part based on an analysis of the collected in-situ monitoring data; and fabricating each additional part based on the determination the stack should receive the additional part. Numerous other aspects are provided.
    Type: Application
    Filed: October 17, 2022
    Publication date: February 2, 2023
    Inventors: Vipul Kumar GUPTA, Natarajan CHENNIMALAI KUMAR, Anthony Joseph VINCIQUERRA, Laura Cerully DIAL, Voramon Supatarawanich DHEERADHADA, Timothy HANLON, Lembit SALASOO, Xiaohu PING, Subhrajit ROYCHOWDHURY, Justin John GAMBONE
  • Patent number: 11541470
    Abstract: A method of furnace-less brazing of a substrate is provided. The method includes providing a substrate having a braze region thereon; disposing braze precursor material containing a nickel powder, an aluminum powder, and a platinum group metal powder on the braze region; and initiating an exothermic reaction of the braze precursor material such that the exothermic reaction produces a braze material that reaches a braze temperature above the solidus temperature of the braze material. A braze precursor material is also provided.
    Type: Grant
    Filed: April 2, 2021
    Date of Patent: January 3, 2023
    Assignee: General Electric Company
    Inventors: Voramon Supatarawanich Dheeradhada, Raghavendra Rao Adharapurapu, Juan Borja, Don Mark Lipkin
  • Patent number: 11511491
    Abstract: Methods and systems for optimizing additive process parameters for an additive manufacturing process. In some embodiments, the process includes receiving initial additive process parameters, generating an uninformed design of experiment utilizing a specified sampling protocol, next generating, based on the uninformed design of experiment, response data, and then generating, based on the response data and on previous design of experiment that includes at least one of the uninformed design of experiment and informed design of experiment, an informed design of experiment by using the machine learning model and the intelligent sampling protocol. The last process step is repeated until a specified objective is reached or satisfied.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: November 29, 2022
    Assignee: General Electric Company
    Inventors: Voramon Supatarawanich Dheeradhada, Natarajan Chennimalai Kumar, Vipul Kumar Gupta, Laura Dial, Anthony Joseph Vinciquerra, Timothy Hanlon
  • Patent number: 11472115
    Abstract: According to some embodiments, system and methods are provided comprising receiving, via a communication interface of a parameter development module comprising a processor, a defined geometry for one or more parts, wherein the parts are manufactured with an additive manufacturing machine, and wherein a stack is formed from one or more parts; fabricating the one or more parts with the additive manufacturing machine based on a first parameter set; collecting in-situ monitoring data from one or more in-situ monitoring systems of the additive manufacturing machine for one or more parts; determining whether each stack should receive an additional part based on an analysis of the collected in-situ monitoring data; and fabricating each additional part based on the determination the stack should receive the additional part. Numerous other aspects are provided.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: October 18, 2022
    Assignee: General Electric Company
    Inventors: Vipul Kumar Gupta, Natarajan Chennimalai Kumar, Anthony Joseph Vinciquerra, Laura Cerully Dial, Voramon Supatarawanich Dheeradhada, Timothy Hanlon, Lembit Salasoo, Xiaohu Ping, Subhrajit Roychowdhury, Justin John Gambone
  • Publication number: 20220314352
    Abstract: A method of furnace-less brazing of a substrate is provided. The method includes providing a substrate having a braze region thereon; disposing braze precursor material containing a nickel powder, an aluminum powder, and a platinum group metal powder on the braze region; and initiating an exothermic reaction of the braze precursor material such that the exothermic reaction produces a braze material that reaches a braze temperature above the solidus temperature of the braze material. A braze precursor material is also provided.
    Type: Application
    Filed: April 2, 2021
    Publication date: October 6, 2022
    Inventors: Voramon Supatarawanich Dheeradhada, Raghavendra Rao Adharapurapu, Juan Borja, Don Mark Lipkin
  • Publication number: 20200298499
    Abstract: According to some embodiments, system and methods are provided comprising receiving, via a communication interface of a parameter development module comprising a processor, a defined geometry for one or more parts, wherein the parts are manufactured with an additive manufacturing machine, and wherein a stack is formed from one or more parts; fabricating the one or more parts with the additive manufacturing machine based on a first parameter set; collecting in-situ monitoring data from one or more in-situ monitoring systems of the additive manufacturing machine for one or more parts; determining whether each stack should receive an additional part based on an analysis of the collected in-situ monitoring data; and fabricating each additional part based on the determination the stack should receive the additional part. Numerous other aspects are provided.
    Type: Application
    Filed: March 21, 2019
    Publication date: September 24, 2020
    Inventors: Vipul Kumar GUPTA, Natarajan CHENNIMALAI KUMAR, Anthony Joseph VINCIQUERRA, Laura Cerully DIAL, Voramon Supatarawanich DHEERADHADA, Timothy HANLON, Lembit SALASOO, Xiaohu PING, Subhrajit ROYCHOWDHURY, Justin John GAMBONE
  • Publication number: 20200147889
    Abstract: Methods and systems for optimizing additive process parameters for an additive manufacturing process. In some embodiments, the process includes receiving initial additive process parameters, generating an uninformed design of experiment utilizing a specified sampling protocol, next generating, based on the uninformed design of experiment, response data, and then generating, based on the response data and on previous design of experiment that includes at least one of the uninformed design of experiment and informed design of experiment, an informed design of experiment by using the machine learning model and the intelligent sampling protocol. The last process step is repeated until a specified objective is reached or satisfied.
    Type: Application
    Filed: November 8, 2018
    Publication date: May 14, 2020
    Inventors: Voramon Supatarawanich DHEERADHADA, Natarajan CHENNIMALAI KUMAR, Vipul Kumar GUPTA, Laura DIAL, Anthony Joseph VINCIQUERRA, Timothy HANLON
  • Publication number: 20170306451
    Abstract: Provided is a nickel-based coating composition containing cobalt, chromium, aluminum, tantalum, and nickel. The coating composition has a three phase ?, ??, ? microstructure wherein at least 5 volume % of the coating composition is present in the ? phase. Also provided are coating systems containing the coating composition, articles having the coating composition or coating system, and methods for protecting nickel-based superalloy substrates using the coating composition or coating system.
    Type: Application
    Filed: April 26, 2016
    Publication date: October 26, 2017
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Voramon Supatarawanich DHEERADHADA, Don Mark LIPKIN, Akane SUZUKI
  • Publication number: 20140170015
    Abstract: A steel composition resistant to sulfidic corrosion has been discovered. The newly discovered steel composition comprises the elements Fe, C, Si, Cu, and Mn wherein the composition comprises from about 96.80 to about 99.00 percent by weight iron, from about 0.10 to about 0.30 percent by weight carbon, from about 0.20 to about 1.40 percent by weight silicon, from about 0.50 to about 1.50 percent by weight copper, and from about 0.20 to about 1.00 percent by weight manganese, wherein the composition is substantially free of chromium, and wherein the composition contains less than 0.1 percent by weight nickel, molybdenum, or tungsten.
    Type: Application
    Filed: December 17, 2012
    Publication date: June 19, 2014
    Applicants: GENERAL ELECTRIC COMPANY
    Inventors: Raul Basilio Rebak, Andrew David Deal, Voramon Supatarawanich Dheeradhada, Judson Sloan Marte, Raghavendra Rao Adharapurapu
  • Publication number: 20120282485
    Abstract: Coatings suitable for use as protective oxide-forming coatings on Nb-based substrates exposed to high temperatures and oxidative environments. The coatings contain chromium and/or molybdenum, preferably contains silicon, and optionally contains niobium, titanium, hafnium, iron, rhenium, tantalum, and/or tungsten, which in combination form multiple intermetallic phases, which in combination form one or more intermetallic phases that promote the formation of a slow-growing oxide scale. Depending on the particular coating composition, the intermetallic phases maybe: a silicon-modified Cr2Nb Laves phase and optionally a chromium solid solution phase, a CrNbSi intermetallic phase, and/or an M3Si intermetallic phase where M is niobium, titanium, and/or chromium; or M5Si3, MSi2 and/or M3Si2 where M is molybdenum, niobium, titanium, chromium, hafnium, iron, rhenium, tantalum, and/or tungsten.
    Type: Application
    Filed: July 10, 2012
    Publication date: November 8, 2012
    Applicant: General Electric Company
    Inventors: Benard Patrick Bewlay, Pazhayannur Ramanathan Subramanian, Joseph David Rigney, Richard Didomizio, Voramon Supatarawanich Dheeradhada
  • Patent number: 8247085
    Abstract: Coatings suitable for use as protective oxide-forming coatings on Nb-based substrates exposed to high temperatures and oxidative environments. The coatings contain chromium and/or molybdenum, preferably contains silicon, and optionally contains niobium, titanium, hafnium, iron, rhenium, tantalum, and/or tungsten, which in combination form multiple intermetallic phases, which in combination form one or more intermetallic phases that promote the formation of a slow-growing oxide scale. Depending on the particular coating composition, the intermetallic phases may be: a silicon-modified Cr2Nb Laves phase and optionally a chromium solid solution phase, a CrNbSi intermetallic phase, and/or an M3Si intermetallic phase where M is niobium, titanium, and/or chromium; or M5Si3, MSi2 and/or M3Si2 where M is molybdenum, niobium, titanium, chromium, hafnium, iron, rhenium, tantalum, and/or tungsten.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: August 21, 2012
    Assignee: General Electric Company
    Inventors: Bernard Patrick Bewlay, Pazhayannur Ramanathan Subramanian, Joseph David Rigney, Richard DiDomizio, Voramon Supatarawanich Dheeradhada
  • Patent number: 8039116
    Abstract: Nb—Si based alloy articles comprising a Nb—Si based alloy upon which is disposed an environmentally-resistant coating are described. They include a coating comprising at least one phase selected from the group consisting of M(Al,Si)3, M5(Al,Si)3, and M3Si5Al2, wherein M is one or more of Nb, Ti, Hf, Cr. Such coating can improve the environmental (e.g., in oxidation-promoting environments) resistance of a Nb—Si based alloy and alloy articles. Methods for preparing these articles are described as well.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: October 18, 2011
    Assignee: General Electric Company
    Inventors: Bernard Patrick Bewlay, Ramgopal Darolia, Voramon Supatarawanich Dheeradhada, Richard DiDomizio, Michael Francis Xavier Gigliotti, Joseph David Rigney, Pazhayannur Ramanathan Subramanian
  • Patent number: 7981520
    Abstract: A coating suitable for use as protective oxide-forming coatings on Nb-based substrates, and particularly monolithic niobium-based alloys, exposed to high temperatures and oxidative environments. The coating contains aluminum, may further contain silicon, and optionally contains niobium, titanium, hafnium, and/or chromium, which in combination form one or more intermetallic phases that promote the formation of a slow-growing oxide scale. The intermetallic phases may be M(Al,Si)3, M5(Al,Si)3, and/or M3Si5Al2 where M is niobium, titanium, hafnium, and/or chromium.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: July 19, 2011
    Assignee: General Electric Company
    Inventors: Bernard Patrick Bewlay, Pazhayannur Ramanathan Subramanian, Joseph David Rigney, Richard DiDomizio, Voramon Supatarawanich Dheeradhada
  • Publication number: 20110146848
    Abstract: Coatings suitable for use as protective oxide-forming coatings on Nb-based substrates exposed to high temperatures and oxidative environments. The coatings contain chromium and/or molybdenum, preferably contains silicon, and optionally contains niobium, titanium, hafnium, iron, rhenium, tantalum, and/or tungsten, which in combination form multiple intermetallic phases, which in combination form one or more intermetallic phases that promote the formation of a slow-growing oxide scale. Depending on the particular coating composition, the intermetallic phases may be: a silicon-modified Cr2Nb Laves phase and optionally a chromium solid solution phase, a CrNbSi intermetallic phase, and/or an M3Si intermetallic phase where M is niobium, titanium, and/or chromium; or M5Si3, MSi2 and/or M3Si2 where M is molybdenum, niobium, titanium, chromium, hafnium, iron, rhenium, tantalum, and/or tungsten.
    Type: Application
    Filed: November 21, 2008
    Publication date: June 23, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Bernard Patrick Bewlay, Pazhayannur Ramanathan Subramanian, Joseph David Rigney, Richard DiDomizio, Voramon Supatarawanich Dheeradhada
  • Publication number: 20090042056
    Abstract: A coating suitable for use as protective oxide-forming coatings on Nb-based substrates, and particularly monolithic niobium-based alloys, exposed to high temperatures and oxidative environments. The coating contains aluminum, may further contain silicon, and optionally contains niobium, titanium, hafnium, and/or chromium, which in combination form one or more intermetallic phases that promote the formation of a slow-growing oxide scale. The intermetallic phases may be M(Al,Si)3, M5(Al,Si)3, and/or M3Si5Al2 where M is niobium, titanium, hafnium, and/or chromium.
    Type: Application
    Filed: September 26, 2008
    Publication date: February 12, 2009
    Applicant: GENERAL ELECTRIC COMAPNY
    Inventors: Bernard Patrick Bewlay, Pazhayannur Ramanathan Subramanian, Joseph David Rigney, Richard DiDomizio, Voramon Supatarawanich Dheeradhada
  • Publication number: 20090042054
    Abstract: Nb—Si based alloy articles comprising a Nb—Si based alloy upon which is disposed an environmentally-resistant coating are described. They include a coating comprising at least one phase selected from the group consisting of M(Al,Si)3, M5(Al,Si)3, and M3Si5Al2, wherein M is one or more of Nb, Ti, Hf, Cr. Such coating can improve the environmental (e.g., in oxidation-promoting environments) resistance of a Nb—Si based alloy and alloy articles. Methods for preparing these articles are described as well.
    Type: Application
    Filed: August 8, 2007
    Publication date: February 12, 2009
    Inventors: Bernard Patrick Bewlay, Ramgopal Darolia, Voramon Supatarawanich Dheeradhada, Richard DiDomizio, Michael Francis Xavier Gigliotti, Joseph David Rigney, Pazhayannur Ramanathan Subramanian
  • Publication number: 20080142122
    Abstract: Niobium silicide articles are described. They include a surface region enriched with at least about 25 atom % germanium, which can enhance the properties of the article. Methods for preparing these articles are described as well. According to one method, an article is formed from a niobium silicide composite material which contains a selected amount of germanium. The article is then heat-treated under conditions sufficient to increase the level of germanium in the surface region to at least about 25 atom %, based on the total composition of the surface region. In another embodiment, a germanium-containing material is applied over a niobium-silicide article, and then diffused into the surface region of the article by way of a heat treatment.
    Type: Application
    Filed: December 19, 2006
    Publication date: June 19, 2008
    Applicant: GENERAL ELECTRIC
    Inventors: Bernard Patrick Bewlay, Richard DiDomizio, Pazhayannur Ramanathan Subramanian, Voramon Supatarawanich Dheeradhada, Joseph David Rigney, Ramgopal Darolia