Patents by Inventor Voya R. Markovich

Voya R. Markovich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110126408
    Abstract: A method of making an electronic package designed for interconnecting high density patterns of conductors of an electronic device (e.g., semiconductor chip) and less dense patterns of conductors of hosting circuitized substrates (e.g., chip carriers, PCBs). In one embodiment, the method includes bonding a chip to a single dielectric layer, forming a high density pattern of conductors on one surface of the layer, forming openings in the layer and then depositing metallurgy to form a desired circuit pattern which is then adapted for engaging and being electrically coupled to a corresponding pattern on yet another hosting substrate. According to another embodiment of the invention, an electronic package using a dual layered interposer is provided. Also provided are methods of making circuitized substrate assemblies using the electronic packages made using the invention's teachings.
    Type: Application
    Filed: December 1, 2009
    Publication date: June 2, 2011
    Inventors: Timothy Antesberger, Frank D. Egitto, Voya R. Markovich, William E. Wilson
  • Publication number: 20110127664
    Abstract: An electronic package for interconnecting a high density pattern of conductors of an electronic device (e.g., semiconductor chip) of the package and a less dense pattern of conductors on a circuitized substrate (e.g., PCB), the package including in one embodiment but a single thin dielectric layer (e.g., Kapton) with a high density pattern of openings therein and a circuit pattern on an opposing surface which includes both a high density pattern of conductors and a less dense pattern of conductors. Conductive members are positioned in the openings to electrically interconnect conductors of the electronic device to conductors of the circuitized substrate when the package is positioned thereon. In another embodiment, the interposer includes a second dielectric layer bonded to the first, with conductive members extending through the second layer to connect to the less dense pattern of circuitized substrate conductors.
    Type: Application
    Filed: November 30, 2009
    Publication date: June 2, 2011
    Inventors: Timothy Antesberger, Frank D. Egitto, Voya R. Markovich, William E. Wilson
  • Patent number: 7931830
    Abstract: A dielectric composition which is adapted for combining with a supporting material ( e.g., fiber-glass cloth) to form a dielectric layer usable in circuitized such as PCBs, chip carriers and the like. As such a layer, it includes a resin, a predetermined percentage by weight of a filler, and, significantly, only a minor amount of bromine. A circuitized substrate comprised of one or more of these dielectric layers and one or more conductive layers is also provided.
    Type: Grant
    Filed: November 3, 2005
    Date of Patent: April 26, 2011
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: Robert M. Japp, Voya R. Markovich, Kostas I. Papathomas
  • Patent number: 7897877
    Abstract: A capacitive substrate and method of making same in which first and second glass layers are used. A first conductor is formed on a first of the glass layers and a capacitive dielectric material is positioned over the conductor. The second conductor is then positioned on the capacitive dielectric and the second glass layer positioned over the second conductor. Conductive thru-holes are formed to couple to the first and second conductors, respectively, such that the conductors and capacitive dielectric material form a capacitor when the capacitive substrate is in operation.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: March 1, 2011
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: Rabindra N. Das, Frank D. Egitto, John M. Lauffer, How T. Lin, Voya R. Markovich
  • Publication number: 20110043987
    Abstract: A method of making a circuitized substrate including a resistor comprised of material which includes a polymer resin and a quantity of nano-powders including a mixture of at least one metal component and at least one ceramic component. The ceramic component may be a ferroelectric ceramic and/or a high surface area ceramic and/or a transparent oxide and/or a dope manganite. Alternatively, the material will include the polymer resin and nano-powders, with the nano-powders comprising at least one metal coated ceramic and/or at least one oxide coated metal component. An electrical assembly (substrate and at least one electrical component) and an information handling system (e.g., personal computer) utilizing such a circuitized substrate are also provided.
    Type: Application
    Filed: November 3, 2010
    Publication date: February 24, 2011
    Inventors: Rabindra N. Das, John M. Lauffer, Voya R. Markovich
  • Publication number: 20110017498
    Abstract: A photosensitive dielectric composition adapted for forming a dielectric film layer for use in a circuitized substrate is provided according to one embodiment of the invention, the composition including an epoxide bearing component including at least one polyepoxide resin curable by electromagnetic radiation, a cyanate ester, a flexibilizer, a nanostructured toughener, a photoinitiator in a predetermined amount by weight of the resin component, and a ceramic filler, the photosensitive dielectric composition forming the dielectric film layer having no solvent therein. In an alternative embodiment, a heat activated dielectric composition is provided which is curable by heat and includes an epoxide bearing component including at least one polyepoxide resin curable by heat, a cyanate ester, a flexibilizer, a nanostructured toughener, a heat activated curing agent for accelerating reaction of the cyanate ester and polyepoxide resin components, and a ceramic filler.
    Type: Application
    Filed: July 27, 2009
    Publication date: January 27, 2011
    Inventors: John M. Lauffer, Voya R. Markovich, Kostas I. Papathomas
  • Publication number: 20100328868
    Abstract: A circuitized substrate in which two conductive layers (e.g., electroplated copper foil) are bonded (e.g., laminated) to an interim dielectric layer. Each of the two foil surfaces which physically bond to the dielectric are smooth (e.g., preferably by chemical processing) and include a thin, organic layer thereon, while the outer surfaces of both foils are also smooth (e.g., preferably also using a chemical processing step). One of these resulting conductive layers may function as a ground or voltage plane while the other may function as a signal plane with a plurality of individual signal lines as part thereof. An electrical assembly and an information handling system utilizing such a circuitized substrate are also provided.
    Type: Application
    Filed: August 11, 2010
    Publication date: December 30, 2010
    Applicant: ENDICOTT INTERCONNECT TECHNOLOGIES, INC.
    Inventors: John M. Lauffer, Voya R. Markovich, Michael Wozniak
  • Patent number: 7838776
    Abstract: A circuitized substrate in which two conductive layers (e.g., electroplated copper foil) are bonded (e.g., laminated) to an interim dielectric layer. Each of the two foil surfaces which physically bond to the dielectric are smooth (e.g., preferably by chemical processing) and include a thin, organic layer thereon, while the outer surfaces of both foils are also smooth (e.g., preferably also using a chemical processing step). One of these resulting conductive layers may function as a ground or voltage plane while the other may function as a signal plane with a plurality of individual signal lines as part thereof. An electrical assembly and an information handling system utilizing such a circuitized substrate are also provided.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: November 23, 2010
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: John M. Lauffer, Voya R. Markovich, Michael Wozniak
  • Patent number: 7827682
    Abstract: Apparatus and method for making circuitized substrates using a continuous roll format in which a layer of conductor is fed into the apparatus, layers of photo-imageable dielectric are applied to opposite sides of the conductor layer, thru-holes are formed through the composite, and then metal layers are added over the dielectric and then patterns (e.g., circuit) are formed therein. Several operations are performed in addition to these to form the final end product, a circuitized substrate (e.g., printed circuit board), all while the conductor layer of the product is retained in a solid format, up to the final separation from the continuous layer.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: November 9, 2010
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: John M. Lauffer, Voya R. Markovich, James J. McNamara, Jr., Peter A. Moschak
  • Patent number: 7823274
    Abstract: A method of making a multilayered circuitized substrate assembly which includes bonding at least two circuitized substrates each including at least one layer of high temperature dielectric material, one of these layers in turn including at least one thru-hole therein having therein a quantity of a a low temperature conductive paste, the paste including an organic binder component and at least one metallic component. The flakes of the metallic component are sintered during the bonding to form a conductive path through the dielectric of one of the substrates.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: November 2, 2010
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: Frank D. Egitto, Voya R. Markovich, Luis J. Matienzo
  • Patent number: 7814649
    Abstract: A method of making a circuitized substrate which includes a plurality of contiguous open segments along a side edge portion of the at least one electrically conductive layer thereof, these open segments isolated by a barrier of dielectric material which substantially fills the open segments, e.g., during a lamination process which bonds two dielectric layers of the substrate to the conductive layer.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: October 19, 2010
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: John M. Lauffer, James M. Larnerd, Voya R. Markovich
  • Patent number: 7803688
    Abstract: A capacitive substrate and method of making same in which first and second glass layers are used. A first conductor is formed on a first of the glass layers and a capacitive dielectric material is positioned over the conductor. The second conductor is then positioned on the capacitive dielectric and the second glass layer positioned over the second conductor. Conductive thru-holes are formed to couple to the first and second conductors, respectively, such that the conductors and capacitive dielectric material form a capacitor when the capacitive substrate is in operation.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: September 28, 2010
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: Rabindra N. Das, Frank D. Egitto, John M. Lauffer, How T. Lin, Voya R. Markovich
  • Patent number: 7800916
    Abstract: A circuitized substrate assembly comprised of at least two circuitized substrates each including a thin dielectric layer and a conductive layer with a plurality of conductive members as part thereof, the conductive members of each substrate being electrically coupled to the conductive sites of a semiconductor chip. A dielectric layer is positioned between both substrates and the substrates are bonded together, such that the chips are internally located within the assembly and oriented in a stacked orientation. A method of making such an assembly is also provided, as is an electrical assembly utilizing same and an information handling system adapted for having such an electrical assembly as part thereof.
    Type: Grant
    Filed: April 9, 2007
    Date of Patent: September 21, 2010
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: Kim J. Blackwell, Frank D. Egitto, John M. Lauffer, Voya R. Markovich
  • Publication number: 20100218891
    Abstract: A multi-layered interconnect structure and method of formation. In a first embodiment, first and second liquid crystal polymer (LCP) dielectric layers are directly bonded, respectively, to first and second opposing surface of a thermally conductive layer, with no extrinsic adhesive material bonding the thermally conductive layer with either the first or second LCP dielectric layer. In a second embodiment, first and second 2S1P substructures are directly bonded, respectively, to first and second opposing surfaces of a LCP dielectric joining layer, with no extrinsic adhesive material bonding the LCP dielectric joining layer with either the first or second 2S1P substructures.
    Type: Application
    Filed: May 10, 2010
    Publication date: September 2, 2010
    Applicant: International Business Machines Corporation
    Inventors: Frank D. Egitto, Donald S. Farquhar, Voya R. Markovich, Mark D. Poliks, Douglas O. Powell
  • Patent number: 7777136
    Abstract: A multi-layered interconnect structure and method of formation. In a first embodiment, first and second liquid crystal polymer (LCP) dielectric layers are directly bonded, respectively, to first and second opposing surface of a thermally conductive layer, with no extrinsic adhesive material bonding the thermally conductive layer with either the first or second LCP dielectric layer. In a second embodiment, first and second 2S1P substructures are directly bonded, respectively, to first and second opposing surfaces of a LCP dielectric joining layer, with no extrinsic adhesive material bonding the LCP dielectric joining layer with either the first or second 2S1P substructures.
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: August 17, 2010
    Assignee: International Business Machines Corporation
    Inventors: Frank D. Egitto, Donald S. Farquhar, Voya R. Markovich, Mark D. Poliks, Douglas O. Powell
  • Patent number: 7738249
    Abstract: An electrical assembly which includes a circuitized substrate including a first plurality of dielectric and electrically conductive circuit layers alternatively oriented in a stacked orientation, a thermal cooling structure bonded to one of the dielectric layers and at least one electrical component mounted on the circuitized substrate. The circuitized substrate includes a plurality of electrically conductive and thermally conductive thru-holes located therein, selected ones of the thermally conductive thru-holes thermally coupled to the electrical component(s) and extending through the first plurality of dielectric and electrically conductive circuit layers and being thermally coupled to the thermal cooling structure, each of these selected ones of thermally conductive thru-holes providing a thermal path from the electrical component to the thermal cooling structure during assembly operation.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: June 15, 2010
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: Benson Chan, Frank D. Egitto, How T. Lin, Roy H. Magnuson, Voya R. Markovich, David L. Thomas
  • Patent number: 7713767
    Abstract: A method of making a circuitized substrate (e.g., PCB) including at least one and possibly several internal optical pathways as part thereof such that the resulting substrate will be capable of transmitting and/or receiving both electrical and optical signals. The method involves forming at least one opening between a side of the optical core and an adjacent upstanding member such that the opening is defined by at least one angular sidewall. Light passing through the optical core material (or into the core from above) is reflected off this angular sidewall. The medium (e.g., air) within the opening thus also serves as a reflecting medium due to its own reflective index in comparison to that of the adjacent optical core material. The method utilizes many processes used in conventional PCB manufacturing, thereby keeping costs to a minimum.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: May 11, 2010
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: Benson Chan, How T. Lin, Roy H. Magnuson, Voya R. Markovich, Mark D. Poliks
  • Patent number: 7687722
    Abstract: A circuitized substrate including a composite layer comprising a first dielectric sub-layer comprised of a halogen-free resin and fibers dispersed therein and a second dielectric sub-layer without fibers but also including a halogen-free resin with inorganic particulates therein. A method of making such a substrate is also provided, as is a multilayered assembly including one or more such circuitized substrates, possibly in combination with other substrates. An information handling system designed for having one or more such circuitized substrates is also provided.
    Type: Grant
    Filed: October 3, 2006
    Date of Patent: March 30, 2010
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: Robert M. Japp, Voya R. Markovich, Kostas I. Papthomas
  • Patent number: 7679005
    Abstract: A circuitized substrate in which selected ones of the signal conductors are substantially surrounded by shielding members which shield the conductors during passage of high frequency signals, e.g., to reduce noise. The shielding members may form solid members which lie parallel and/or perpendicular to the signal conductors, and may also be substantially cylindrical in shape to surround a conductive thru-hole which also forms part of the substrate. An electrical assembly and an information handling system are also defined.
    Type: Grant
    Filed: April 11, 2006
    Date of Patent: March 16, 2010
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: Benson Chan, Frank D. Egitto, Roy H. Magnuson, Voya R. Markovich, David L. Thomas
  • Patent number: 7646098
    Abstract: A multilayered circuitized substrate including a plurality of dielectric layers each comprised of a p-aramid paper impregnated with a halogen-free, low moisture absorptivity resin including an inorganic filler but not including continuous or semi-continuous fiberglass fibers as part thereof, and a first circuitized layer positioned on a first of the dielectric layers. A method of making this substrate is also provided.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: January 12, 2010
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: Robert M. Japp, Voya R. Markovich, Kostas I. Papathomas, Mark D. Poliks