Patents by Inventor Wai Kei Lam

Wai Kei Lam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240011105
    Abstract: Various embodiments are directed to detecting infection-causing microbial cell-free DNA from a biological sample based on their size profiles and/or end signatures, in which the detection of infection-causing microbial DNA can be performed without no template control (NTC) samples. Embodiments can include identifying the infection-causing pathogen-derived microbial DNA based on sizes of microbial cell-free DNA molecules. Embodiments can also include identifying from the infection-causing pathogen-derived microbial DNA based on end signatures of microbial cell-free DNA molecules. Embodiments can also include applying a machine-learning algorithm to a plurality of vectors that represent end signatures of the microbial cell-free DNA molecules, to identify the infection-causing pathogen-derived microbial DNA. By detecting the infection-causing pathogen-derived microbial DNA, a level of infection for the biological sample can be predicted.
    Type: Application
    Filed: July 8, 2022
    Publication date: January 11, 2024
    Inventors: Yuk-Ming Dennis Lo, Kwan Chee Chan, Rossa Wai Kwun Chiu, Wai Kei Lam, Peiyong Jiang, Guangya Wang
  • Publication number: 20230151436
    Abstract: Various embodiments are directed to applications (e.g., classification of biological samples) of the analysis of the count, the fragmentation patterns, and size of cell-free nucleic acids, e.g., plasma DNA and serum DNA, including nucleic acids from pathogens, such as viruses. Embodiments of one application can determine if a subject has a particular condition. For example, a method of present disclosure can determine if a subject has cancer or a tumor, or other pathology. Embodiments of another application can be used to assess the stage of a condition, or the progression of a condition over time. For example, a method of the present disclosure may be used to determine a stage of cancer in a subject, or the progression of cancer in a subject over time (e.g., using samples obtained from a subject at different times).
    Type: Application
    Filed: October 18, 2022
    Publication date: May 18, 2023
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Wai Kei Lam
  • Publication number: 20230132951
    Abstract: Methods are provided to improve the positive predictive value for cancer detection using cell-free nucleic acid samples. Various embodiments are directed to applications (e.g., diagnostic applications) of the analysis of the fragmentation patterns and size of cell-free DNA, e.g., plasma DNA and serum DNA, including nucleic acids from pathogens, including viruses. Embodiments of one application can determine if a subject has a particular condition. For example, a method of present disclosure can determine if a subject has cancer or a tumor, or other pathology. Embodiments of another application can be used to assess the stage of a condition, or the progression of a condition over time. For example, a method of the present disclosure may be used to determine a stage of cancer in a subject, or the progression of cancer in a subject over time (e.g., using samples obtained from a subject at different times).
    Type: Application
    Filed: August 9, 2022
    Publication date: May 4, 2023
    Inventors: Eugeni Namsaraev, Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Kun Sun, Wai Kei Lam
  • Publication number: 20230103637
    Abstract: Various embodiments are directed to applications (e.g., classification of biological samples) of the analysis of the count and size of cell-free nucleic acids, e.g., plasma DNA and serum DNA, including nucleic acids from pathogens, such as viruses. Embodiments of one application can predict if a subject previously treated for a pathology will relapse at a future time point. Targeted sequencing (e.g., specifically designed capture probes, amplification primers) can be used to identify DNA across the entire viral genome.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 6, 2023
    Inventors: Yuk-Ming Dennis Lo, Kwan Chee Chan, Wai Kei Lam, Chiu Tung Chan
  • Publication number: 20220380855
    Abstract: Provided herein are methods and systems for identifying chimeric nucleic acid fragments, e.g., organism-pathogen chimeric nucleic acid fragments and chromosomal rearrangement chimeric nucleic acid fragments. Also provided herein are methods and systems relating to determining a pathogen integration profile or a chromosomal rearrangement in a biological sample and determining a classification of pathology based at least in part on a pathogen integration profile or a chromosomal rearrangement in a biological sample. In certain aspects of the present disclosure, cell-free nucleic acid molecules from a biological sample are analyzed.
    Type: Application
    Filed: July 29, 2022
    Publication date: December 1, 2022
    Inventors: Yuk-Ming Dennis LO, Rossa Wai Kwun CHIU, Kwan Chee CHAN, Peiyong JIANG, Wai Kei LAM, Haiqiang ZHANG
  • Patent number: 11479825
    Abstract: Various embodiments are directed to applications (e.g., classification of biological samples) of the analysis of the count, the fragmentation patterns, and size of cell-free nucleic acids, e.g., plasma DNA and serum DNA, including nucleic acids from pathogens, such as viruses. Embodiments of one application can determine if a subject has a particular condition. For example, a method of present disclosure can determine if a subject has cancer or a tumor, or other pathology. Embodiments of another application can be used to assess the stage of a condition, or the progression of a condition over time. For example, a method of the present disclosure may be used to determine a stage of cancer in a subject, or the progression of cancer in a subject over time (e.g., using samples obtained from a subject at different times).
    Type: Grant
    Filed: April 24, 2020
    Date of Patent: October 25, 2022
    Assignees: The Chinese University of Hong Kong, GRAIL, Inc.
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Wai Kei Lam
  • Patent number: 11459616
    Abstract: Methods are provided to improve the positive predictive value for cancer detection using cell-free nucleic acid samples. Various embodiments are directed to applications (e.g., diagnostic applications) of the analysis of the fragmentation patterns and size of cell-free DNA, e.g., plasma DNA and serum DNA, including nucleic acids from pathogens, including viruses. Embodiments of one application can determine if a subject has a particular condition. For example, a method of present disclosure can determine if a subject has cancer or a tumor, or other pathology. Embodiments of another application can be used to assess the stage of a condition, or the progression of a condition over time. For example, a method of the present disclosure may be used to determine a stage of cancer in a subject, or the progression of cancer in a subject over time (e.g., using samples obtained from a subject at different times).
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: October 4, 2022
    Assignees: The Chinese University of Hong Kong, GRAIL, Inc.
    Inventors: Eugeni Namsaraev, Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Kun Sun, Wai Kei Lam
  • Patent number: 11447829
    Abstract: Provided herein are methods and systems for identifying chimeric nucleic acid fragments, e.g., organism-pathogen chimeric nucleic acid fragments and chromosomal rearrangement chimeric nucleic acid fragments. Also provided herein are methods and systems relating to determining a pathogen integration profile or a chromosomal rearrangement in a biological sample and determining a classification of pathology based at least in part on a pathogen integration profile or a chromosomal rearrangement in a biological sample. In certain aspects of the present disclosure, cell-free nucleic acid molecules from a biological sample are analyzed.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: September 20, 2022
    Assignee: GRAIL, LLC
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Wai Kei Lam, Haiqiang Zhang
  • Publication number: 20220010353
    Abstract: Various embodiments are directed to using nuclease expression in tissues that influences cell-free DNA end signatures/motifs and size of overhang between DNA strands. Embodiments can identify a nuclease that is being differentially regulated in abnormal cells relative to normal cells. Embodiments can determine that the nuclease preferentially cuts DNA into DNA molecules having: (i) a particular sequence end signature; or (ii) a specified length of overhang between a first strand and a second strand. A parameter can be determined for a biological sample based on an amount of DNA molecules that include an end sequence corresponding to the particular sequence end signature and/or a measured property correlating to the specified length of overhang. The parameter can be used to determine a characteristic of a tissue type, a fractional concentration of clinically-relevant DNA molecules, or a level of abnormality of a tissue type in the biological sample.
    Type: Application
    Filed: July 13, 2021
    Publication date: January 13, 2022
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Wing Yan Chan, Wai Kei Lam, Diana Siao Cheng Han, Wenlei Peng, Chen Ding
  • Publication number: 20200325546
    Abstract: Cell-free DNA molecules in a mixture of a biological sample can be analyzed to detect viral DNA. Methylation of viral DNA molecules at one or more sites in the viral genome can be determined. Mixture methylation level(s) can be measured based on one or more amounts of the plurality of cell-free DNA molecules methylated at a set of site(s) of the particular viral genome. The mixture methylation level(s) can be determined in various ways, e.g., as a density of cell-free DNA molecules that are methylated at a site or across multiple sites or regions. The mixture methylation level(s) can be compared to reference methylation level(s), e.g., determined from at least two cohorts of other subjects. The cohorts can have different classifications (including the first condition) associated with the particular viral genome. A first classification of whether the subject has the first condition can be determined based on the comparing.
    Type: Application
    Filed: June 25, 2020
    Publication date: October 15, 2020
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Wai Kei Lam
  • Publication number: 20200318204
    Abstract: Various embodiments are directed to applications (e.g., classification of biological samples) of the analysis of the count, the fragmentation patterns, and size of cell-free nucleic acids, e.g., plasma DNA and serum DNA, including nucleic acids from pathogens, such as viruses. Embodiments of one application can determine if a subject has a particular condition. For example, a method of present disclosure can determine if a subject has cancer or a tumor, or other pathology. Embodiments of another application can be used to assess the stage of a condition, or the progression of a condition over time. For example, a method of the present disclosure may be used to determine a stage of cancer in a subject, or the progression of cancer in a subject over time (e.g., using samples obtained from a subject at different times).
    Type: Application
    Filed: April 24, 2020
    Publication date: October 8, 2020
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Wai Kei Lam
  • Publication number: 20200318190
    Abstract: Provided herein are methods and systems for stratifying risk for a subject to develop a pathogen-associated disorder based on analysis of cell-free nucleic acid molecules from a biological sample of the subject. In various examples, screening frequency is determined based on the risk analysis. Also provided herein are methods and systems for analyzing variant patterns of a pathogen genome in cell-free nucleic acid molecules.
    Type: Application
    Filed: April 1, 2020
    Publication date: October 8, 2020
    Inventors: Yuk-Ming Dennis LO, Rossa Wai Kwun CHIU, Kwan Chee CHAN, Peiyong JIANG, Wai Kei LAM, Lu JI
  • Patent number: 10731224
    Abstract: Cell-free DNA molecules in a mixture of a biological sample can be analyzed to detect viral DNA. Methylation of viral DNA molecules at one or more sites in the viral genome can be determined. Mixture methylation level(s) can be measured based on one or more amounts of the plurality of cell-free DNA molecules methylated at a set of site(s) of the particular viral genome. The mixture methylation level(s) can be determined in various ways, e.g., as a density of cell-free DNA molecules that are methylated at a site or across multiple sites or regions. The mixture methylation level(s) can be compared to reference methylation level(s), e.g., determined from at least two cohorts of other subjects. The cohorts can have different classifications (including the first condition) associated with the particular viral genome. A first classification of whether the subject has the first condition can be determined based on the comparing.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: August 4, 2020
    Assignee: The Chinese University of Hong Kong
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Wai Kei Lam
  • Patent number: 10633713
    Abstract: Various embodiments are directed to applications (e.g., classification of biological samples) of the analysis of the count, the fragmentation patterns, and size of cell-free nucleic acids, e.g., plasma DNA and serum DNA, including nucleic acids from pathogens, such as viruses. Embodiments of one application can determine if a subject has a particular condition. For example, a method of present disclosure can determine if a subject has cancer or a tumor, or other pathology. Embodiments of another application can be used to assess the stage of a condition, or the progression of a condition over time. For example, a method of the present disclosure may be used to determine a stage of cancer in a subject, or the progression of cancer in a subject over time (e.g., using samples obtained from a subject at different times).
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: April 28, 2020
    Assignees: The Chinese University of Hong Kong, GRAIL, Inc.
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Wai Kei Lam
  • Publication number: 20200002770
    Abstract: Provided herein are methods and systems for identifying chimeric nucleic acid fragments, e.g., organism-pathogen chimeric nucleic acid fragments and chromosomal rearrangement chimeric nucleic acid fragments. Also provided herein are methods and systems relating to determining a pathogen integration profile or a chromosomal rearrangement in a biological sample and determining a classification of pathology based at least in part on a pathogen integration profile or a chromosomal rearrangement in a biological sample. In certain aspects of the present disclosure, cell-free nucleic acid molecules from a biological sample are analyzed.
    Type: Application
    Filed: June 28, 2019
    Publication date: January 2, 2020
    Inventors: Yuk-Ming Dennis LO, Rossa Wai Kwun CHIU, Kwan Chee CHAN, Peiyong JIANG, Wai Kei LAM, Haiqiang ZHANG
  • Publication number: 20190032145
    Abstract: Cell-free DNA molecules in a mixture of a biological sample can be analyzed to detect viral DNA. Methylation of viral DNA molecules at one or more sites in the viral genome can be determined. Mixture methylation level(s) can be measured based on one or more amounts of the plurality of cell-free DNA molecules methylated at a set of site(s) of the particular viral genome. The mixture methylation level(s) can be determined in various ways, e.g., as a density of cell-free DNA molecules that are methylated at a site or across multiple sites or regions. The mixture methylation level(s) can be compared to reference methylation level(s), e.g., determined from at least two cohorts of other subjects. The cohorts can have different classifications (including the first condition) associated with the particular viral genome. A first classification of whether the subject has the first condition can be determined based on the comparing.
    Type: Application
    Filed: July 26, 2018
    Publication date: January 31, 2019
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Wai Kei Lam
  • Publication number: 20180237863
    Abstract: Methods are provided to improve the positive predictive value for cancer detection using cell-free nucleic acid samples. Various embodiments are directed to applications (e.g., diagnostic applications) of the analysis of the fragmentation patterns and size of cell-free DNA, e.g., plasma DNA and serum DNA, including nucleic acids from pathogens, including viruses. Embodiments of one application can determine if a subject has a particular condition. For example, a method of present disclosure can determine if a subject has cancer or a tumor, or other pathology. Embodiments of another application can be used to assess the stage of a condition, or the progression of a condition over time. For example, a method of the present disclosure may be used to determine a stage of cancer in a subject, or the progression of cancer in a subject over time (e.g., using samples obtained from a subject at different times).
    Type: Application
    Filed: October 25, 2017
    Publication date: August 23, 2018
    Inventors: Eugeni NAMSARAEV, Yuk-Ming Dennis LO, Rossa Wai Kwun CHIU, Kwan Chee CHAN, Peiyong JIANG, Kun SUN, Wai Kei LAM
  • Publication number: 20180208999
    Abstract: Various embodiments are directed to applications (e.g., classification of biological samples) of the analysis of the count, the fragmentation patterns, and size of cell-free nucleic acids, e.g., plasma DNA and serum DNA, including nucleic acids from pathogens, such as viruses. Embodiments of one application can determine if a subject has a particular condition. For example, a method of present disclosure can determine if a subject has cancer or a tumor, or other pathology. Embodiments of another application can be used to assess the stage of a condition, or the progression of a condition over time. For example, a method of the present disclosure may be used to determine a stage of cancer in a subject, or the progression of cancer in a subject over time (e.g., using samples obtained from a subject at different times).
    Type: Application
    Filed: January 25, 2018
    Publication date: July 26, 2018
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Wai Kei Lam