Patents by Inventor Walid Hafez

Walid Hafez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220059552
    Abstract: A device structure includes a first gate on a first fin, a second gate on a second fin, where the second gate is spaced apart from the first gate by a distance. A fuse spans the distance and is in contact with the first gate and the second gate. A first dielectric is between the first fin and the second fin, where the first dielectric is in contact with, and below, the fuse and a second dielectric is between the first gate and the second gate, where the second dielectric is on the fuse.
    Type: Application
    Filed: August 24, 2020
    Publication date: February 24, 2022
    Applicant: Intel Corporation
    Inventors: Sumit Ashtekar, Rahul Ramaswamy, Walid Hafez, Hector M. Saavedra Garcia
  • Patent number: 11239149
    Abstract: Embodiments herein may describe techniques for an integrated circuit including a metal interconnect above a substrate and coupled to a first contact and a second contact. The first contact and the second contact may be above the metal interconnect and in contact with the metal interconnect. A first resistance may exist between the first contact and the second contact through the metal interconnect. After a programming voltage is applied to the second contact while the first contact is coupled to a ground terminal to generate a current between the first contact and the second contact, a non-conducting barrier may be formed as an interface between the second contact and the metal interconnect. A second resistance may exist between the first contact, the metal interconnect, the second contact, and the non-conducting barrier. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: February 1, 2022
    Assignee: Intel Corporation
    Inventors: Vincent Dorgan, Jeffrey Hicks, Uddalak Bhattacharya, Zhanping Chen, Walid Hafez
  • Patent number: 10811751
    Abstract: Embodiments of the invention include an electromagnetic waveguide and methods of forming the electromagnetic waveguide. In an embodiment the electromagnetic waveguide includes a first spacer and a second spacer. In an embodiment, the first and second spacer each have a reentrant profile. The electromagnetic waveguide may also include a conductive body formed between in the first and second spacer, and a void formed within the conductive body. In an additional embodiment, the electromagnetic waveguide may include a first spacer and a second spacer. Additionally, the electromagnetic waveguide may include a first portion of a conductive body formed along sidewalls of the first and second spacer and a second portion of the conductive body formed between an upper portion of the first portion of the conductive body. In an embodiment, the first portion of the conductive body and the second portion of the conductive body define a void through the electromagnetic waveguide.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: October 20, 2020
    Assignee: Intel Corporation
    Inventors: Rahul Ramaswamy, Chia-Hong Jan, Walid Hafez, Neville Dias, Hsu-Yu Chang, Roman Olac-Vaw, Chen-Guan Lee
  • Patent number: 10761264
    Abstract: Embodiments of the invention include an electromagnetic waveguide and methods of forming electromagnetic waveguides. In an embodiment, the electromagnetic waveguide may include a first semiconductor fin extending up from a substrate and a second semiconductor fin extending up from the substrate. The fins may be bent towards each other so that a centerline of the first semiconductor fin and a centerline of the second semiconductor fin extend from the substrate at a non-orthogonal angle. Accordingly, a cavity may be defined by the first semiconductor fin, the second semiconductor fin, and a top surface of the substrate. Embodiments of the invention may include a metallic layer and a cladding layer lining the surfaces of the cavity. Additional embodiments may include a core formed in the cavity.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: September 1, 2020
    Assignee: Intel Corporation
    Inventors: Rahul Ramaswamy, Chia-Hong Jan, Walid Hafez, Neville Dias, Hsu-Yu Chang, Roman W. Olac-Vaw, Chen-Guan Lee
  • Patent number: 10763209
    Abstract: A MOS antifuse with an accelerated dielectric breakdown induced by a void or seam formed in the electrode. In some embodiments, the programming voltage at which a MOS antifuse undergoes dielectric breakdown is reduced through intentional damage to at least part of the MOS antifuse dielectric. In some embodiments, damage may be introduced during an etchback of an electrode material which has a seam formed during backfilling of the electrode material into an opening having a threshold aspect ratio. In further embodiments, a MOS antifuse bit-cell includes a MOS transistor and a MOS antifuse. The MOS transistor has a gate electrode that maintains a predetermined voltage threshold swing, while the MOS antifuse has a gate electrode with a void accelerated dielectric breakdown.
    Type: Grant
    Filed: August 19, 2014
    Date of Patent: September 1, 2020
    Assignee: Intel Corporation
    Inventors: Roman Olac-Vaw, Walid Hafez, Chia-Hong Jan, Hsu-Yu Chang, Ting Chang, Rahul Ramaswamy, Pei-Chi Liu, Neville Dias
  • Publication number: 20200211842
    Abstract: An integrated circuit structure comprises a relaxed buffer stack that includes a channel region, wherein the relaxed buffer stack and the channel region include a group III-N semiconductor material, wherein the relaxed buffer stack comprises a plurality of AlGaN material layers and a buffer stack over the plurality of AlGaN material layers, wherein the buffer stack comprises the group III-N semiconductor material and has a thickness of less than approximately 25 nm. A back barrier is in the relaxed buffer stack between the plurality of AlGaN material layers and the buffer stack, wherein the back barrier comprises an AlGaN material of approximately 2-10% Al. A polarization stack over the relaxed buffer stack.
    Type: Application
    Filed: December 26, 2018
    Publication date: July 2, 2020
    Inventors: Glenn GLASS, Sansaptak DASGUPTA, Han Wui THEN, Marko RADOSAVLJEVIC, Paul FISCHER, Anand MURTHY, Walid HAFEZ
  • Publication number: 20200194552
    Abstract: An integrated circuit structure comprises a base layer that includes a channel region, wherein the base layer and the channel region include group III-V semiconductor material. A polarization layer stack is over the base layer, wherein the polarization layer stack comprises a buffer stack, an interlayer over the buffer stack, a polarization layer over the interlayer. A cap layer stack is over the polarization layer to reduce transistor access resistance.
    Type: Application
    Filed: December 17, 2018
    Publication date: June 18, 2020
    Inventors: Sansaptak DASGUPTA, Marko RADOSAVLJEVIC, Han Wui THEN, Nidhi NIDHI, Rahul RAMASWAMY, Johann RODE, Paul FISCHER, Walid HAFEZ
  • Publication number: 20200176582
    Abstract: An integrated circuit includes a gate structure in contact with a portion of semiconductor material between a source region and a drain region. The gate structure includes gate dielectric and a gate electrode. The gate dielectric includes at least two hybrid stacks of dielectric material. Each hybrid stack includes a layer of low-? dielectric and a layer of high-? dielectric on the layer of low-? dielectric, where the layer of high-? dielectric has a thickness at least two times the thickness of the layer of low-? dielectric. In some cases, the layer of low-? dielectric has a thickness no greater than 1.5 nm. The layer of high-? dielectric may be a composite layer that includes two or more layers of compositionally-distinct materials. The gate structure can be used with any number of transistor configurations but is particularly useful with respect to group III-V transistors.
    Type: Application
    Filed: December 4, 2018
    Publication date: June 4, 2020
    Applicant: INTEL CORPORATION
    Inventors: Johann C. Rode, Samuel J. Beach, Nidhi Nidhi, Rahul Ramaswamy, Han Wui Then, Walid Hafez
  • Publication number: 20200105882
    Abstract: Transistor structures for logic, power management, or radio frequency integrated circuits, devices and computing platforms employing such transistor structures, and methods for forming them are discussed. The transistor structures include a fin structure having multiple graded III-N material layers with polarization layers therebetween. The fin structure provides a multi-gate multi-nanowire confined transistor architecture for improved performance.
    Type: Application
    Filed: September 28, 2018
    Publication date: April 2, 2020
    Inventors: Han Wui THEN, Marko RADOSAVLJEVIC, Sansaptak DASGUPTA, Paul FISCHER, Walid HAFEZ
  • Publication number: 20200105744
    Abstract: A device includes a diode that includes a first group III-nitride (III-N) material and a transistor adjacent to the diode, where the transistor includes the first III-N material. The diode includes a second III-N material, a third III-N material between the first III-N material and the second III-N material, a first terminal including a metal in contact with the third III-N material, a second terminal coupled to the first terminal through the first group III-N material. The device further includes a transistor structure, adjacent to the diode structure. The transistor structure includes the first, second, and third III-N materials, a source and drain, a gate electrode and a gate dielectric between the gate electrode and each of the first, second and third III-N materials.
    Type: Application
    Filed: September 29, 2018
    Publication date: April 2, 2020
    Applicant: Intel Corporation
    Inventors: Sansaptak Dasgupta, Marko Radosavljevic, Han Wui Then, Paul Fischer, Walid Hafez
  • Publication number: 20200105884
    Abstract: A device includes a first Group III-Nitride (III-N) material, a gate electrode above the III-N material, and the gate electrode. The device further includes a tiered field plate, suitable for increasing gate breakdown voltage with minimal parasitics. In the tiered structure, a first plate is on the gate electrode, the first plate having a second sidewall laterally beyond a sidewall of the gate, and above the III-N material by a first distance. A second plate on the first plate has a third sidewall laterally beyond the second sidewall and above the III-N material by a second distance, greater than the first. A source structure and a drain structure are on opposite sides of the gate electrode, where the source and drain structures each include a second III-N material.
    Type: Application
    Filed: September 29, 2018
    Publication date: April 2, 2020
    Applicant: Intel Corporation
    Inventors: Walid Hafez, Han Wui Then, Sansaptak Dasgupta, Marko Radosavljevic, Paul Fischer
  • Publication number: 20200105746
    Abstract: A method for fabricating a semiconductor structure includes forming a plurality of semiconductor fins protruding through a trench isolation region above a substrate. A first gate structure is formed over a first of the plurality of semiconductor fins. A second gate structure is formed over a second of the plurality of semiconductor fins. A gate edge isolation structure is formed laterally between and in contact with the first gate structure and the second gate structure, the gate edge isolation structure on the trench isolation region and extending above an uppermost surface of the first gate structure and the second gate structure. A precision resistor is formed on the gate edge isolation structure, wherein the precision resistor and the first gate structure and second gate structure comprise a same material layer.
    Type: Application
    Filed: September 29, 2018
    Publication date: April 2, 2020
    Inventors: Roman OLAC-VAW, Nick LINDERT, Chia-Hong JAN, Walid HAFEZ
  • Publication number: 20200105880
    Abstract: A transistor includes a polarization layer above a channel layer including a first III-Nitride (III-N) material, a gate electrode above the polarization layer, a source structure and a drain structure on opposite sides of the gate electrode, where the source structure and a drain structure each include a second III-N material. The transistor further includes a silicide on at least a portion of the source structure or the drain structure. A contact is coupled through the silicide to the source or drain structure.
    Type: Application
    Filed: September 27, 2018
    Publication date: April 2, 2020
    Applicant: Intel Corporation
    Inventors: Sansaptak Dasgupta, Marko Radosavljevic, Han Wui Then, Paul Fischer, Walid Hafez
  • Publication number: 20200098885
    Abstract: A transistor comprises a base layer that includes a channel region, wherein the base layer and the channel region include group III-V semiconductor material. A gate stack is above the channel region, the gate stack comprises a gate electrode and a composite gate dielectric stack, wherein the composite gate dielectric stack comprises a first large bandgap oxide layer, a low bandgap oxide layer, and a second large bandgap oxide layer to provide a programmable voltage threshold. Source and drain regions are adjacent to the channel region.
    Type: Application
    Filed: September 24, 2018
    Publication date: March 26, 2020
    Inventors: Han Wui THEN, Marko RADOSAVLJEVIC, Sansaptak DUSGUPTA, Paul FISCHER, Walid HAFEZ
  • Publication number: 20200098746
    Abstract: Integrated circuit architectures for load and input matching that include a capacitance selectable between a plurality of discrete levels, which are associated with a number of field effect transistors (FET) capacitor structures that are in an on-state. The capacitance comprises a metal-oxide-semiconductor (MOS) capacitance associated with each of the FET capacitor structures, and may be selectable through application of a bias voltage applied between a first circuit node and a second circuit node. Gate electrodes of the FET capacitor structures may be coupled in electrical parallel to the first circuit node, while source/drains of the FET capacitor structures are coupled in electrical parallel to the second circuit node. Where the FET capacitor structures have different gate-source threshold voltages, the number of FET capacitor structures in the on-state may be varied according to the bias voltage, and the capacitance correspondingly tuned to a desired value.
    Type: Application
    Filed: September 25, 2018
    Publication date: March 26, 2020
    Applicant: Intel Corporation
    Inventors: Han Wui Then, Marko Radosavljevic, Sansaptak Dasgupta, Paul Fischer, Walid Hafez, Nicholas McKubre
  • Publication number: 20200091285
    Abstract: Integrated circuits with III-N metal-insulator-semiconductor field effect transistor (MISFET) structures that employ one or more gate dielectric materials that differ across the MISFETs. Gate dielectric materials may be selected to modulate dielectric breakdown strength and/or threshold voltage between transistors. Threshold voltage may be modulated between two MISFET structures that may be substantially the same but for the gate dielectric. Control of the gate dielectric material may render some MISFETs to be operable in depletion mode while other MISFETs are operable in enhancement mode. Gate dielectric materials may be varied by incorporating multiple dielectric materials in some MISFETs of an IC while other MISFETs of the IC may include only a single dielectric material. Combinations of gate dielectric material layers may be selected to provide a menu of low voltage, high voltage, enhancement and depletion mode MISFETs within an IC.
    Type: Application
    Filed: September 13, 2018
    Publication date: March 19, 2020
    Applicant: Intel Corporation
    Inventors: Walid Hafez, Han Wui Then, Sansaptak Dasgupta, Marko Radosavljevic, Paul Fischer
  • Publication number: 20200083360
    Abstract: III-N transistor structure with modulation in the thickness of a III-N material that induces a 2D carrier gas within another III-N material. A thickness of the III-N material within a first distance between a gate terminal and second transistor terminal may be lower than a thickness of the III-N material within a second distance between the gate terminal and a third transistor terminal. Carrier density within the 2D carrier gas, as driven by the thickness modulation, may be lower within a distance between a gate electrode and a second terminal of the transistor. With lower carrier density, more voltage may be dropped over a given distance. Lateral dimensions of a transistor capable of sustaining a given gate-drain voltage, for example, may be reduced.
    Type: Application
    Filed: September 10, 2018
    Publication date: March 12, 2020
    Applicant: Intel Corporation
    Inventors: Walid Hafez, Han Wui Then, Sansaptak Dasgupta, Marko Radosavljevic, Paul Fischer
  • Publication number: 20200006322
    Abstract: Embodiments herein describe techniques, systems, and method for a semiconductor device. Embodiments herein may present a semiconductor device having a channel area including a channel III-V material, and a source area including a first portion and a second portion of the source area. The first portion of the source area includes a first III-V material, and the second portion of the source area includes a second III-V material. The channel III-V material, the first III-V material and the second III-V material may have a same lattice constant. Moreover, the first III-V material has a first bandgap, and the second III-V material has a second bandgap, the channel III-V material has a channel III-V material bandgap, where the channel material bandgap, the second bandgap, and the first bandgap form a monotonic sequence of bandgaps. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: June 29, 2018
    Publication date: January 2, 2020
    Inventors: Han Wui THEN, Paul FISCHER, Walid HAFEZ, Marko RADOSAVLJEVIC, Sansaptak DASGUPTA
  • Publication number: 20190393211
    Abstract: A substrate contact diode is disclosed. The substrate contact includes a first type substrate implant tap in a substrate, a second type epitaxial implant in an epitaxial layer that is on the substrate, and a first type epitaxial region above the second type epitaxial implant. A contact electrode that extends upward from the top of the first type epitaxial region to the surface of an interlayer dielectric that surrounds the contact electrode.
    Type: Application
    Filed: June 22, 2018
    Publication date: December 26, 2019
    Inventors: Han Wui THEN, Paul FISCHER, Walid HAFEZ, Marko RADOSAVLJEVIC, Sansaptak DASGUPTA
  • Publication number: 20190393092
    Abstract: A diode is disclosed. The diode includes a semiconductor substrate, a hard mask formed above the substrate, vertically oriented components of a first material adjacent sides of the hard mask, and laterally oriented components of the first material on top of the hard mask. The laterally oriented components are oriented in a first direction and a second direction. The diode also includes a second material on top of the first material. The second material forms a Schottky barrier.
    Type: Application
    Filed: June 22, 2018
    Publication date: December 26, 2019
    Applicant: Intel Corporation
    Inventors: Sansaptak DASGUPTA, Marko RADOSAVLJEVIC, Han Wui THEN, Paul FISCHER, Walid HAFEZ