Patents by Inventor Walter B. Meinel

Walter B. Meinel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9921110
    Abstract: A radiation sensor includes an integrated circuit radiation sensor chip (1A) including first (7) and second (8) thermopile junctions connected in series to form a thermopile (7,8) within a dielectric stack (3). The first thermopile junction (7) is insulated from a substrate (2) of the chip. A resistive heater (6) in the dielectric stack for heating the first thermopile junction is coupled to a calibration circuit (67) for calibrating responsivity of the thermopile (7,8). The calibration circuit causes a current flow in the heater and multiplies the current by a resulting voltage across the heater to determine power dissipation. A resulting thermoelectric voltage (Vout) of the thermopile (7,8) is divided by the power to provide the responsivity of the sensor.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: March 20, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Walter B. Meinel, Kalin Lazarov
  • Publication number: 20160282189
    Abstract: A radiation sensor includes an integrated circuit radiation sensor chip (1A) including first (7) and second (8) thermopile junctions connected in series to form a thermopile (7,8) within a dielectric stack (3). The first thermopile junction (7) is insulated from a substrate (2) of the chip. A resistive heater (6) in the dielectric stack for heating the first thermopile junction is coupled to a calibration circuit (67) for calibrating responsivity of the thermopile (7,8). The calibration circuit causes a current flow in the heater and multiplies the current by a resulting voltage across the heater to determine power dissipation. A resulting thermoelectric voltage (Vout) of the thermopile (7,8) is divided by the power to provide the responsivity of the sensor.
    Type: Application
    Filed: June 6, 2016
    Publication date: September 29, 2016
    Inventors: Walter B. Meinel, Kalin Lazarov
  • Patent number: 9417133
    Abstract: A radiation sensor (27) includes a radiation sensor chip (1) including first (7) and second (8) thermopile junctions connected to form a thermopile (7,8). The first thermopile junction is disposed in a floating portion of a dielectric membrane (3) thermally insulated from a silicon substrate (2) of the chip, and the second thermopile junction is disposed in the dielectric membrane directly adjacent to the substrate. Bump conductors (28) are bonded to corresponding bonding pads (28A) coupled to the thermopile (7,8) to physically and electrically connect the chip to conductors on a printed circuit board (23). The silicon substrate transmits infrared radiation to the thermopile while blocking visible light.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: August 16, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Walter B. Meinel, Kalin V. Lazarov
  • Patent number: 9360376
    Abstract: A radiation sensor includes an integrated circuit radiation sensor chip (1A) including first (7) and second (8) thermopile junctions connected in series to form a thermopile (7,8) within a dielectric stack (3). The first thermopile junction (7) is insulated from a substrate (2) of the chip. A resistive heater (6) in the dielectric stack for heating the first thermopile junction is coupled to a calibration circuit (67) for calibrating responsivity of the thermopile (7,8). The calibration circuit causes a current flow in the heater and multiplies the current by a resulting voltage across the heater to determine power dissipation. A resulting thermoelectric voltage (Vout) of the thermopile (7,8) is divided by the power to provide the responsivity of the sensor.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: June 7, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Walter B. Meinel, Kalin Lazarov
  • Patent number: 9157807
    Abstract: A semiconductor device includes a semiconductor layer (2) and a dielectric stack (3) on the semiconductor layer. A plurality of etchant openings (24-1,2 . . . ) are formed through the dielectric stack (3) for passage of etchant for etching a plurality of overlapping sub-cavities (4-1,2 . . . ), respectively. The etchant is introduced through the etchant openings to etch a composite cavity (4) in the semiconductor layer by simultaneously etching the plurality of overlapping sub-cavities into the semiconductor layer.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: October 13, 2015
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Walter B. Meinel, Kalin V. Lazarov, Brian E. Goodlin
  • Publication number: 20140151559
    Abstract: A radiation sensor includes an integrated circuit radiation sensor chip (1A) including first (7) and second (8) thermopile junctions connected in series to form a thermopile (7,8) within a dielectric stack (3). The first thermopile junction (7) is insulated from a substrate (2) of the chip. A resistive heater (6) in the dielectric stack for heating the first thermopile junction is coupled to a calibration circuit (67) for calibrating responsivity of the thermopile (7,8). The calibration circuit causes a current flow in the heater and multiplies the current by a resulting voltage across the heater to determine power dissipation. A resulting thermoelectric voltage (Vout) of the thermopile (7,8) is divided by the power to provide the responsivity of the sensor.
    Type: Application
    Filed: February 5, 2014
    Publication date: June 5, 2014
    Applicant: Texas Instruments Incorporated
    Inventors: Walter B. Meinel, Kalin Lazarov
  • Publication number: 20140131577
    Abstract: A radiation sensor (27) includes a radiation sensor chip (1) including first (7) and second (8) thermopile junctions connected to form a thermopile (7,8). The first thermopile junction is disposed in a floating portion of a dielectric membrane (3) thermally insulated from a silicon substrate (2) of the chip, and the second thermopile junction is disposed in the dielectric membrane directly adjacent to the substrate. Bump conductors (28) are bonded to corresponding bonding pads (28A) coupled to the thermopile (7,8) to physically and electrically connect the chip to conductors on a printed circuit board (23). The silicon substrate transmits infrared radiation to the thermopile while blocking visible light.
    Type: Application
    Filed: November 6, 2013
    Publication date: May 15, 2014
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Walter B. Meinel, Kalin V. Lazarov
  • Patent number: 8607631
    Abstract: An inertial sensor (16) includes a differential thermocouple (13) including first (4A) and second (4B) metal traces, a poly trace (6) with a first end connected to a first end of the first metal trace to form a first (?) thermocouple junction and a second end connected to a first end of the second metal trace to form a second (+) thermocouple junction. A gas mass (10) located symmetrically with respect to the thermocouple junctions is heated by a heater (8). Acceleration or tilting of the sensor shifts the relative location of the gas mass relative to the thermocouple junctions, causing differential heating thereof and generation of a corresponding thermocouple output signal.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: December 17, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Walter B. Meinel, Kalin V. Lazarov
  • Patent number: 8604435
    Abstract: A radiation sensor (27) includes a radiation sensor chip (1) including first (7) and second (8) thermopile junctions connected to form a thermopile (7,8). The first thermopile junction is disposed in a floating portion of a dielectric membrane (3) thermally insulated from a silicon substrate (2) of the chip, and the second thermopile junction is disposed in the dielectric membrane directly adjacent to the substrate. Bump conductors (28) are bonded to corresponding bonding pads (28A) coupled to the thermopile (7,8) to physically and electrically connect the chip to conductors on a printed circuit board (23). The silicon substrate transmits infrared radiation to the thermopile while blocking visible light.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: December 10, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Walter B. Meinel, Kalin V. Lazarov
  • Patent number: 8304850
    Abstract: An infrared (IR) radiation sensor device (27) includes an integrated circuit radiation sensor chip (1A) including first (7) and second (8) temperature-sensitive elements connected within a dielectric stack (3) of the chip, the first temperature-sensitive element (7) being more thermally insulated from a substrate (2) than the second temperature-sensitive element (8). Bonding pads (28A) on the chip (1) are coupled to the first and second temperature-sensitive elements. Bump conductors (28) are bonded to the bonding pads (28A), respectively, for physically and electrically connecting the radiation sensor chip (1) to corresponding mounting conductors (23A). A diffractive optical element (21,22,23,31,32 or 34) is integrated with a back surface (25) of the radiation sensor chip (1) to direct IR radiation toward the first temperature-sensitive element (7).
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: November 6, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Kalin V. Lazarov, Walter B. Meinel
  • Publication number: 20120266672
    Abstract: An inertial sensor (16) includes a differential thermocouple (13) including first (4A) and second (4B) metal traces, a poly trace (6) with a first end connected to a first end of the first metal trace to form a first (?) thermocouple junction and a second end connected to a first end of the second metal trace to form a second (+) thermocouple junction. A gas mass (10) located symmetrically with respect to the thermocouple junctions is heated by a heater (8). Acceleration or tilting of the sensor shifts the relative location of the gas mass relative to the thermocouple junctions, causing differential heating thereof and generation of a corresponding thermocouple output signal.
    Type: Application
    Filed: April 22, 2011
    Publication date: October 25, 2012
    Inventors: Walter B. Meinel, Kalin V. Lazarov
  • Publication number: 20120200486
    Abstract: A system for generating tracking coordinate information in response to movement of an information-indicating element includes an array (55) of IR sensors (60-x,y) disposed along a surface (55A) of the array. Each IR sensor includes first (7) and second (8) thermopile junctions connected in series to form a thermopile (7,8) within a dielectric stack (3) of a radiation sensor chip (1). The first thermopile junction is more thermally insulated from a substrate (2) of the radiation sensor chip than the second thermopile junction. A sensor output signal between the first and second thermopile junctions is coupled to a bus (63). A processing device (64) is coupled to the bus for operating on information representing temperature differences between the first and second thermopile junctions of the various IR sensors, respectively, caused by the presence of the information-indicating element to produce the tracking coordinate information as the information-indicating element moves along the surface.
    Type: Application
    Filed: February 9, 2011
    Publication date: August 9, 2012
    Inventors: Walter B. Meinel, Kalin V. Lazarov, Timothy V. Kalthoff
  • Publication number: 20120138800
    Abstract: A radiation sensor includes an integrated circuit radiation sensor chip (1A) including first (7) and second (8) thermopile junctions connected in series to form a thermopile (7,8) within a dielectric stack (3). The first thermopile junction (7) is insulated from a substrate (2) of the chip. A resistive heater (6) in the dielectric stack for heating the first thermopile junction is coupled to a calibration circuit (67) for calibrating responsivity of the thermopile (7,8). The calibration circuit causes a current flow in the heater and multiplies the current by a resulting voltage across the heater to determine power dissipation. A resulting thermoelectric voltage (Vout) of the thermopile (7,8) is divided by the power to provide the responsivity of the sensor.
    Type: Application
    Filed: February 14, 2012
    Publication date: June 7, 2012
    Applicant: Texas Instruments Incorporated
    Inventors: Walter B. Meinel, Kalin V. Lazarov
  • Patent number: 8129682
    Abstract: A radiation sensor includes an integrated circuit radiation sensor chip (1A) including first (7) and second (8) thermopile junctions connected in series to form a thermopile (7,8) within a dielectric stack (3). The first thermopile junction (7) is insulated from a substrate (2) of the chip. A resistive heater (6) in the dielectric stack for heating the first thermopile junction is coupled to a calibration circuit (67) for calibrating responsivity of the thermopile (7,8). The calibration circuit causes a current flow in the heater and multiplies the current by a resulting voltage across the heater to determine power dissipation. A resulting thermoelectric voltage (Vout) of the thermopile (7,8) is divided by the power to provide the responsivity of the sensor.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: March 6, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Walter B. Meinel, Kalin V. Lazarov
  • Patent number: 8115272
    Abstract: An apparatus includes a semiconductor layer (2) having therein a cavity (4). A dielectric layer (3) is formed on the semiconductor layer. A plurality of etchant openings (24) extend through the dielectric layer for passage of etchant for etching the cavity. An SiO2 pillar (25) extends from a bottom of the cavity to engage and support a portion of the dielectric layer extending over the cavity. In one embodiment, a cap layer (34) on the dielectric layer covers the etchant openings.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: February 14, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Walter B. Meinel, Kalin V. Lazarov, Brian E. Goodlin
  • Patent number: 8114779
    Abstract: An apparatus includes a semiconductor layer (2) having therein a cavity (4). A dielectric layer (3) is formed on the semiconductor layer. A plurality of etchant openings (24) extend through the dielectric layer for passage of etchant for etching the cavity. An SiO2 pillar (25) extends from a bottom of the cavity to engage and support a portion of the dielectric layer extending over the cavity. In one embodiment, a cap layer (34) on the dielectric layer covers the etchant openings.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: February 14, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Walter B. Meinel, Kalin V. Lazarov, Brian E. Goodlin
  • Publication number: 20110294246
    Abstract: An apparatus includes a semiconductor layer (2) having therein a cavity (4). A dielectric layer (3) is formed on the semiconductor layer. A plurality of etchant openings (24) extend through the dielectric layer for passage of etchant for etching the cavity. An SiO2 pillar (25) extends from a bottom of the cavity to engage and support a portion of the dielectric layer extending over the cavity. In one embodiment, a cap layer (34) on the dielectric layer covers the etchant openings.
    Type: Application
    Filed: August 11, 2011
    Publication date: December 1, 2011
    Applicant: Texas Instruments Incorporated
    Inventors: Walter B. Meinel, Kalin V. Lazarov, Brian E. Goodlin
  • Publication number: 20110291222
    Abstract: An apparatus includes a semiconductor layer (2) having therein a cavity (4). A dielectric layer (3) is formed on the semiconductor layer. A plurality of etchant openings (24) extend through the dielectric layer for passage of etchant for etching the cavity. An SiO2 pillar (25) extends from a bottom of the cavity to engage and support a portion of the dielectric layer extending over the cavity. In one embodiment, a cap layer (34) on the dielectric layer covers the etchant openings.
    Type: Application
    Filed: August 11, 2011
    Publication date: December 1, 2011
    Applicant: Texas Instruments Incorporated
    Inventors: Walter B. Meinel, Kalin V. Lazarov, Brian E. Goodlin
  • Patent number: 8026177
    Abstract: A semiconductor device includes a semiconductor layer (2) having therein a cavity (4). A dielectric layer (3) is formed on the semiconductor layer. A plurality of etchant openings (24) extend through the dielectric layer for passage of etchant for etching the cavity. An SiO2 pillar (25) extends from a bottom of the cavity to engage and support a portion of the dielectric layer extending over the cavity. In one embodiment, a cap layer (34) on the dielectric layer covers the etchant openings.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: September 27, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Walter B. Meinel, Kalin V. Lazarov, Brian E. Goodlin
  • Publication number: 20110147869
    Abstract: An infrared (IR) radiation sensor device (27) includes an integrated circuit radiation sensor chip (1A) including first (7) and second (8) temperature-sensitive elements connected within a dielectric stack (3) of the chip, the first temperature-sensitive element (7) being more thermally insulated from a substrate (2) than the second temperature-sensitive element (8). Bonding pads (28A) on the chip (1) are coupled to the first and second temperature-sensitive elements. Bump conductors (28) are bonded to the bonding pads (28A), respectively, for physically and electrically connecting the radiation sensor chip (1) to corresponding mounting conductors (23A). A diffractive optical element (21,22,23,31,32 or 34) is integrated with a back surface (25) of the radiation sensor chip (1) to direct IR radiation toward the first temperature-sensitive element (7).
    Type: Application
    Filed: December 22, 2009
    Publication date: June 23, 2011
    Applicant: Texas Instruments Incorporated
    Inventors: Kalin V. Lazarov, Walter B. Meinel