Patents by Inventor Walter Hong-Shong Chang

Walter Hong-Shong Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170030920
    Abstract: The present invention discloses a method for separating nanoparticles with a controlled number of active groups is disclosed. First, a plurality of nanoparticles are provided, wherein the surface of the nanoparticle comprises a plurality of first active groups. Next, a plurality of functional ligands are provided, wherein the functional ligand comprises at least one second active group and at least one third active group. Then, a binding process is performed to bind the nanoparticle with the functional ligand, wherein the first active group connects with the second active group. After the binding process, a converting process and a separation process are performed to isolate a plurality of nanoparticles with a controlled number of the fifth active groups. The controlled number is integers from 0 to 10.
    Type: Application
    Filed: October 14, 2016
    Publication date: February 2, 2017
    Inventors: Walter Hong-Shong Chang, Jimmy Kuan-Jung Li, Ralph Alexander Sperling, Teresa Pellegrino, Wolfgang Parak
  • Patent number: 9523032
    Abstract: A medical contrast agent made of microbubbles containing Au nanoclusters is provided. The shell of the microbubbles contains fluorescent Au nanocluster-albumin complex, and the core contains air or fluorocarbons. The method for preparing the microbubbles is also disclosed.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: December 20, 2016
    Assignee: CHUNG YUAN CHRISTIAN UNIVERSITY
    Inventors: Cheng-An J. Lin, Walter Hong-Shong Chang, Chih-Hsien Lee, Wen-Kai Chuang
  • Patent number: 9494593
    Abstract: The present invention discloses a method for separating nanoparticles with a controlled number of active groups is disclosed. First, a plurality of nanoparticles are provided, wherein the surface of the nanoparticle comprises a plurality of first active groups. Next, a plurality of functional ligands are provided, wherein the functional ligand comprises at least one second active group and at least one third active group. Then, a binding process is performed to bind the nanoparticle with the functional ligand, wherein the first active group connects with the second active group. After the binding process, a separation process is performed to isolate a plurality of nanoparticles with a controlled number of the third active groups. The controlled number is integers from 0 to 10.
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: November 15, 2016
    Assignee: CHUNG YUAN CHRISTIAN UNIVERSITY
    Inventors: Walter Hong-Shong Chang, Jimmy Kuan-Jung Li, Ralph Alexander Sperling, Teresa Pellegrino, Wolfgang Parak
  • Publication number: 20140360981
    Abstract: A medical contrast agent made of microbubbles containing Au nanoclusters is provided. The shell of the microbubbles contains fluorescent Au nanocluster-albumin complex, and the core contains air or fluorocarbons. The method for preparing the microbubbles is also disclosed.
    Type: Application
    Filed: August 26, 2014
    Publication date: December 11, 2014
    Inventors: Cheng-An J. Lin, Walter Hong-Shong CHANG, Chih-Hsien LEE, Wen-Kai CHUANG
  • Patent number: 8263668
    Abstract: The present invention discloses a tunable fluorescent gold nanocluster. The tunable fluorescent gold nanocluster is formed by mixing gold trichloride (AuCl3) with toluene solvent without reductant. The tunable fluorescent gold nanocluster emits blue fluorescence that can be red shifted through ultrasonic vibration. The spectral region of the tunable fluorescent gold nanocluster is from 400 nm to 550 nm.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: September 11, 2012
    Assignee: Chung Yuan Christian University
    Inventors: Walter Hong-Shong Chang, Cherng-Jyh Ke, Cheng-An Lin, Ching-Yun Chen
  • Publication number: 20120195833
    Abstract: A medical contrast agent made of microbubbles containing Au nanoclusters is provided. The shell of the microbubbles contains fluorescent Au nanocluster-albumin complex, and the core contains air or fluorocarbons. The method for preparing the microbubbles is also disclosed.
    Type: Application
    Filed: February 1, 2011
    Publication date: August 2, 2012
    Applicant: CHUNG YUAN CHRISTIAN UNIVERSITY
    Inventors: Cheng-An J. Lin, Walter Hong-Shong CHANG, Chih-Hsien LEE, Wen-Kai CHUANG
  • Publication number: 20120100075
    Abstract: The present invention discloses a fluorescent gold nanocluster, comprising: a dihydrolipoic acid ligand (DHLA) on the surface thereof, wherein the fluorescent gold nanocluster generates fluorescence by the interaction between the dihydrolipoic acid ligand and the nanocluster and the particle diameter of the fluorescent gold nanocluster is between 0.5 nm and 3 nm, wherein the wavelength of the emission fluorescence of the fluorescent gold nanocluster is between 400 nm and 1000 nm. In addition, the fluorescent gold nanocluster is used as bioprobes and/or applied in fluorescent biological label, clinical image as contrast medium, clinical detection, clinical trace, and clinical treatment etc.
    Type: Application
    Filed: December 23, 2011
    Publication date: April 26, 2012
    Applicant: CHUNG YUAN CHRISTIAN UNIVERSITY
    Inventors: Walter Hong-Shong Chang, Cheng-An Lin, Ting-Ya Yang, Chih-Hsien Lee, Ralph A. Sperling, Wolfgang J. Parak
  • Patent number: 7662615
    Abstract: The present invention discloses a system for cultivating cells, wherein the system comprises a bioreactor, a pump, and an electromagnetic module comprising a coil and an electromagnetic stimulator. The cells are disposed within the bioreactor. The pump, connected to the bioreactor, is used to drive gas into the bioreactor, so as to ensure a sufficient gas supply for the cells. Additionally, the electromagnetic stimulator, connected to the coil, is used to provide a plurality of first signals, and the first signals are transported to the coil. Then the induced electromagnetic field is produced by the coil, whereby the induced electromagnetic field is applied on the cells within the bioreactor. Moreover, this invention also discloses the method for cultivating cells.
    Type: Grant
    Filed: July 21, 2005
    Date of Patent: February 16, 2010
    Assignee: Chung Yuan Christian University
    Inventors: Walter Hong-Shong Chang, Ming-Tzu Tsai
  • Publication number: 20090298115
    Abstract: The present invention discloses a fluorescent gold nanocluster, comprising: a dihydrolipoic acid ligand (DHLA) on the surface thereof, wherein the fluorescent gold nanocluster generates fluorescence by the interaction between the dihydrolipoic acid ligand and the nanocluster and the particle diameter of the fluorescent gold nanocluster is between 0.5 nm and 3 nm, wherein the wavelength of the emission fluorescence of the fluorescent gold nanocluster is between 400 nm and 1000 nm. In addition, the fluorescent gold nanocluster is used as bioprobes and/or applied in fluorescent biological label, clinical image as contrast medium, clinical detection, clinical trace, and clinical treatment etc.
    Type: Application
    Filed: April 17, 2009
    Publication date: December 3, 2009
    Applicant: CHUNG YUAN CHRISTIAN UNIVERSITY
    Inventors: Walter Hong-Shong Chang, Cheng-An Lin, Ting-Ya Yang, Chih-Hsien Lee, Ralph A. Sperling, Wolfgang J. Parak
  • Publication number: 20090036625
    Abstract: The present invention discloses an amphiphilic polymer, comprising a polymer backbone, at least one hydrophobic side chain, and at least one hydrophilic side chain wherein one end of the hydrophobic side chain is bound to the polymer backbone and one end of the hydrophilic side chain is bound to the polymer backbone. The polymer backbone is derived from a homopolymer or copolymer of an anhydride. In addition, the present invention discloses a water-soluble polymer micell having the above described amphiphilic polymer and forming method and applications thereof.
    Type: Application
    Filed: August 1, 2007
    Publication date: February 5, 2009
    Applicant: CHUNG YUAN CHRISTIAN UNIVERSITY
    Inventors: Walter Hong-Shong Chang, Cheng-An J. Lin, Jimmy Kuan-Jung Li, Martin Oheim, Aleksey Yakovlev, Anne Feltz, Camilla Luccardini, Maria Teresa Fernandez-Arguelles, Ralph A. Sperling, Wolfgang J. Parak