Patents by Inventor Walter M. Presz, Jr.

Walter M. Presz, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170175073
    Abstract: A perfusion bioreactor includes at least one ultrasonic transducer that can acoustically generate a multi-dimensional standing wave. The standing wave can be used to retain cells in the bioreactor, and can also be utilized to dewater or further harvest product from the waste materials produced in a bioreactor.
    Type: Application
    Filed: March 8, 2017
    Publication date: June 22, 2017
    Inventors: Bart Lipkens, Louis Masi, Stanley Kowalski, III, Walter M. Presz, JR., Jason Dionne, Brian Dutra, Ari Mercado, Thomas J. Kennedy, III, Arthur Martin, John Rozembersky
  • Publication number: 20170166860
    Abstract: Methods for generating particulate clusters and nodal trapping lines having desired widths are disclosed. The devices include an acoustic chamber having an inlet and an outlet. An ultrasonic transducer and reflector create a multi-dimensional acoustic standing wave that generates particulate clusters separated by a channel of fluid running therebetween and creates nodal trapping lines. The frequency of the multi-dimensional acoustic standing wave can be selectively tuned so as to selectively control at least one of (a) a width of each particulate cluster, or (b) a width of each channel of fluid. The frequency of the multi-dimensional acoustic standing wave can also be selectively tuned so as to selectively control the width of each nodal trapping line. Also disclosed are particulate clusters separated by a channel of fluid, wherein a ratio of the widths of the particulate clusters and the channel of fluid can be varied as desired.
    Type: Application
    Filed: January 3, 2017
    Publication date: June 15, 2017
    Inventors: Walter M. Presz, JR., Kedar Chitale, Bart Lipkens
  • Patent number: 9675902
    Abstract: An acoustic standing wave is utilized to separate components from a multi-component fluid, such as oil from an oil-water mixture, in a fluid flow scheme with an acoustophoresis device. For example, the flow scheme and device allows for trapping of the oil as the oil coalesces, agglomerates, and becomes more buoyant than the water.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: June 13, 2017
    Assignee: FLODESIGN SONICS, INC.
    Inventors: Bart Lipkens, Jason Dionne, Ari Mercado, Brian Dutra, Walter M. Presz, Jr., Thomas J. Kennedy, III, Louis Masi
  • Publication number: 20170159007
    Abstract: A perfusion bioreactor includes at least one ultrasonic transducer that can acoustically generate a multi-dimensional standing wave. The standing wave can be used to retain cells in the bioreactor, and can also be utilized to dewater or further harvest product from the waste materials produced in a bioreactor.
    Type: Application
    Filed: February 14, 2017
    Publication date: June 8, 2017
    Inventors: Bart Lipkens, Louis Masi, Stanley Kowalski, III, Walter M. Presz, JR., Jason Dionne, Brian Dutra, Ari Mercado, Thomas J. Kennedy, III, Arthur Martin
  • Publication number: 20170159005
    Abstract: A perfusion bioreactor includes at least one ultrasonic transducer that can acoustically generate a multi-dimensional standing wave. The standing wave can be used to retain cells in the bioreactor, and can also be utilized to dewater or further harvest product from the waste materials produced in a bioreactor.
    Type: Application
    Filed: February 14, 2017
    Publication date: June 8, 2017
    Inventors: Bart Lipkens, Louis Masi, Stanley Kowalski, III, Walter M. Presz, JR., Jason Dionne, Brian Dutra, Ari Mercado, Thomas J. Kennedy, III, Arthur Martin
  • Publication number: 20170137774
    Abstract: Methods are disclosed for separating beads and cells from a host fluid. The method includes flowing a mixture containing the host fluid, the beads, and the cells through an acoustophoretic device having an ultrasonic transducer including a piezoelectric material driven by a drive signal to create a multi-dimensional acoustic standing wave. A drive signal is sent to drive the at least one ultrasonic transducer to create the multi-dimensional acoustic standing wave. A recirculating fluid stream having a tangential flow path is located substantially tangential to the standing wave and separated therefrom by an interface region. A portion of the cells pass through the standing wave, and the beads are held back from the standing wave in the recirculating fluid stream at the interface region. Also disclosed is an acoustophoretic device having a coolant inlet adapted to permit the ingress of a cooling fluid into the device for cooling the transducer.
    Type: Application
    Filed: January 30, 2017
    Publication date: May 18, 2017
    Inventors: Bart Lipkens, Rudolf Gilmanshin, Louis Masi, Benjamin Ross-Johnsrud, Erik Miller, Walter M. Presz, JR., Thomas J. Kennedy, III
  • Publication number: 20170088809
    Abstract: An acoustophoresis device made up of modular components is disclosed. Several modules are disclosed herein, including ultrasonic transducer modules, input/output modules, collection well modules, and various connector modules. These permit different systems to be constructed that have appropriate fluid dynamics for separation of particles, such as biological cells, from a fluid.
    Type: Application
    Filed: October 3, 2016
    Publication date: March 30, 2017
    Inventors: Bart Lipkens, Thomas J. Kennedy, III, Jeffrey King, Jason Barnes, Brian McCarthy, Dane Mealey, Erik Miller, Walter M. Presz, JR., Benjamin Ross-Johnsrud, John Rozembersky
  • Publication number: 20170081629
    Abstract: An acoustophoresis device made up of modular components is disclosed. Several modules are disclosed herein, including ultrasonic transducer modules, input/output modules, collection well modules, and various connector modules. These permit different systems to be constructed that have appropriate fluid dynamics for separation of particles, such as biological cells, from a fluid.
    Type: Application
    Filed: December 6, 2016
    Publication date: March 23, 2017
    Inventors: Bart Lipkens, Jason Barnes, Dane Mealey, Walter M. Presz, JR., Stanley Kowalski, III, Louis Masi, Thomas J. Kennedy, III, Brian McCarthy, Ben Ross-Johnsrud
  • Publication number: 20170044517
    Abstract: A system having improved trapping force for acoustophoresis is described where the trapping force is improved by manipulation of the frequency of the ultrasonic transducer. The transducer includes a ceramic crystal. The crystal may be directly exposed to fluid flow. The crystal may be air backed, resulting in a higher Q factor.
    Type: Application
    Filed: October 4, 2016
    Publication date: February 16, 2017
    Inventors: Bart Lipkens, Jason Dionne, Walter M. Presz, JR., Thomas J. Kennedy, III
  • Patent number: 9567559
    Abstract: A perfusion bioreactor includes at least one ultrasonic transducer that can acoustically generate a multi-dimensional standing wave. The standing wave can be used to retain cells in the bioreactor, and can also be utilized to dewater or further harvest product from the waste materials produced in a bioreactor.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: February 14, 2017
    Assignee: FLODESIGN SONICS, INC.
    Inventors: Bart Lipkens, Louis Masi, Stanley Kowalski, III, Walter M. Presz, Jr., Jason Dionne, Brian Dutra, Ari Mercado, Thomas J. Kennedy, III, Arthur Martin
  • Publication number: 20170008029
    Abstract: An acoustophoretic device is disclosed. The acoustophoretic device includes an acoustic chamber, an ultrasonic transducer, and a reflector. The ultrasonic transducer includes a piezoelectric material driven by a voltage signal to create a multi-dimensional acoustic standing wave in the acoustic chamber emanating from a non-planar face of the piezoelectric material. A method for separating a second fluid or a particulate from a host fluid is also disclosed. The method includes flowing the mixture through an acoustophoretic device. A voltage signal is sent to drive the ultrasonic transducer to create the multi-dimensional acoustic standing wave in the acoustic chamber such that the second fluid or particulate is continuously trapped in the standing wave, and then agglomerates, aggregates, clumps, or coalesces together, and subsequently rises or settles out of the host fluid due to buoyancy or gravity forces, and exits the acoustic chamber.
    Type: Application
    Filed: July 9, 2016
    Publication date: January 12, 2017
    Inventors: Bart Lipkens, Walter M Presz, JR., Kedar Chitale, Thomas J Kennedy, III, Rudolf Gilmanshin, Dane Mealey, Brian Dutra, David Sokolowski
  • Patent number: 9533241
    Abstract: Devices for separating materials from a host fluid are disclosed. The devices include an acoustic chamber having an inlet and an outlet. An ultrasonic transducer and reflector create a multi-dimensional acoustic standing wave in the acoustic chamber that traps the materials and permits a continuous separation of the materials from the host fluid. The materials and the host fluid can thus be separately collected. Multiple sets of trapping lines are generated by the acoustic standing wave, and the transducer is oriented to minimize cross-sectional area for straight vertical channels between the trapping lines.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: January 3, 2017
    Assignee: FloDesign Sonics, Inc.
    Inventors: Walter M. Presz, Jr., Kedar Chitale, Bart Lipkens
  • Publication number: 20160361670
    Abstract: Devices for separating a host fluid from a second fluid or particulate are disclosed. The devices include an acoustic chamber, a fluid outlet at a top end of the acoustic chamber, a concentrate outlet at a bottom end of the acoustic chamber, and an inlet on a first side end of the acoustic chamber. An ultrasonic transducer and reflector create a multi-dimensional acoustic standing wave in the acoustic chamber that traps and separates particulates (e.g. cells) from a host fluid. The host fluid is collected via the fluid outlet, and the particulates are collected via the concentrate outlet. The device is a large-scale device that is able to process liters/hour, and has a large interior volume.
    Type: Application
    Filed: August 26, 2016
    Publication date: December 15, 2016
    Inventors: Bart Lipkens, Walter M. Presz, JR., Jeffrey King, Jason Barnes, Dane Mealey, Brian McCarthy, Ben Ross-Johnsrud, Kedar Chitale
  • Publication number: 20160355776
    Abstract: A perfusion bioreactor includes at least one ultrasonic transducer that can acoustically generate a multi-dimensional standing wave. The standing wave can be used to retain cells in the bioreactor, and can also be utilized to dewater or further harvest product from the waste materials produced in a bioreactor.
    Type: Application
    Filed: August 16, 2016
    Publication date: December 8, 2016
    Inventors: Bart Lipkens, Louis Masi, Stanley Kowalski, III, Walter M. Presz, JR., Jason Dionne, Brian Dutra, Ari Mercado, Thomas J. Kennedy, III, Arthur Martin
  • Patent number: 9512395
    Abstract: An acoustophoresis device made up of modular components is disclosed. Several modules are disclosed herein, including ultrasonic transducer modules, input/output modules, collection well modules, and various connector modules. These permit different systems to be constructed that have appropriate fluid dynamics for separation of particles, such as biological cells, from a fluid.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: December 6, 2016
    Assignee: FloDesign Sonics, Inc.
    Inventors: Bart Lipkens, Jason Barnes, Dane Mealey, Walter M. Presz, Jr., Stanley Kowalski, III, Louis Masi, Thomas J. Kennedy, III, Brian McCarthy, Ben Ross-Johnsrud
  • Publication number: 20160325206
    Abstract: Devices and methods for pre-conditioning and/or post-conditioning a host fluid containing a second fluid or particulate are disclosed. The devices include a flow chamber having first opening and a particulate outlet. The devices can also include side openings and alignment, fluid, and particulate screens. An ultrasonic transducer can be driven to create an acoustic standing wave in the flow chamber, or alternatively be driven to excite the wall of the flow chamber in which it is located. This creates a uniformly stratified flow within the flow chamber, with the second fluid or particulate being aligned in planes in the fluid mixture. This permits the host fluid to be separated therefrom using the fluid screen and the particulate screen.
    Type: Application
    Filed: May 6, 2016
    Publication date: November 10, 2016
    Inventors: Walter M. Presz, JR., Bart Lipkens, Jason Dionne, Rudolf Gilmanshin, Erik Miller
  • Publication number: 20160319270
    Abstract: Devices for separating materials from a host fluid are disclosed. The devices include a flow chamber, an ultrasonic transducer, and a reflector. The ultrasonic transducer and reflector create an angled acoustic standing wave oriented at an angle relative to the direction of mean flow through the flow chamber. The angled acoustic standing wave results in an acoustic radiation force having an axial force component that deflects the materials, so that the materials and the host fluid can thus be separated. The angled acoustic standing wave can be oriented at an angle of about 20° to about 70° relative to the direction of mean flow through the flow chamber to deflect, collect, differentiate, or fractionate the materials from the fluid flowing through the device at flow rates of about 400 mL/min up to about 700 mL/min.
    Type: Application
    Filed: April 29, 2016
    Publication date: November 3, 2016
    Inventors: Bart Lipkens, Walter M. Presz, JR., Kedar Chitale, Thomas J. Kennedy, III
  • Patent number: 9458450
    Abstract: A system having improved trapping force for acoustophoresis is described where the trapping force is improved by manipulation of the frequency of the ultrasonic transducer. The transducer includes a ceramic crystal. The crystal may be directly exposed to fluid flow. The crystal may be air backed, resulting in a higher Q factor.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: October 4, 2016
    Assignee: FloDesign Sonics, Inc.
    Inventors: Bart Lipkens, Jason Dionne, Walter M. Presz, Jr., Thomas J. Kennedy, III
  • Publication number: 20160279540
    Abstract: Devices for separating materials from a host fluid are disclosed. The devices include an acoustic chamber having an inlet and an outlet. An ultrasonic transducer and reflector create a multi-dimensional acoustic standing wave in the acoustic chamber that traps the materials and permits a continuous separation of the materials from the host fluid. The materials and the host fluid can thus be separately collected. Multiple sets of trapping lines are generated by the acoustic standing wave, and the transducer is oriented to minimize cross-sectional area for straight vertical channels between the trapping lines.
    Type: Application
    Filed: March 24, 2016
    Publication date: September 29, 2016
    Inventors: Walter M. Presz, JR., Kedar Chitale, Bart Lipkens
  • Patent number: D787630
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: May 23, 2017
    Assignee: FLODESIGN SONICS, INC.
    Inventors: Bart Lipkens, Jason Barnes, Dane Mealey, Walter M. Presz, Jr., Brian McCarthy, Benjamin Ross-Johnsrud, Kedar Chitale