Patents by Inventor Walter Vermeiren

Walter Vermeiren has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11964934
    Abstract: The disclosure relates to a process to perform a catalytic cracking reaction of hydrocarbons having at least four carbons, said process comprising the steps of providing a fluidized bed reactor comprising at least two electrodes and a bed comprising particles, wherein the particles are put in a fluidized state to obtain a fluidized bed; heating said bed to a temperature between 500° C. and 850° C. by passing an electric current through the fluidized bed to conduct the reaction. The process is remarkable in that the particles of the bed comprise electrically conductive particles and particles of a catalytic composition, wherein at least 10 wt. % of the particles are electrically conductive particles and have a resistivity from 0.001 to 500 Ohm.cm at 500° C. and in that the step of heating the fluidized bed is performed by passing an electric current through the fluidized bed.
    Type: Grant
    Filed: July 27, 2021
    Date of Patent: April 23, 2024
    Assignee: TOTALENERGIES ONETECH
    Inventors: Gleb Veryasov, Nikolai Nesterenko, Walter Vermeiren
  • Patent number: 11964868
    Abstract: The disclosure relates to a process to perform an endothermic steam reforming of hydrocarbons, said process comprising the steps of providing a fluidized bed reactor comprising at least two electrodes and a bed comprising particles, wherein the particles are put in a fluidized state to obtain a fluidized bed; heating the fluidized bed to a temperature ranging from 500° C. to 1200° C. by passing an electric current through the fluidized bed to conduct the endothermic reaction. The process is remarkable in that the particles of the bed comprise electrically conductive particles and particles of a catalytic composition, wherein at least 10 wt. % of the particles are electrically conductive particles and have a resistivity ranging from 0.001 to 500 Ohm·cm at 800° C. and in that the step of heating the fluidized bed is performed by passing an electric current through the fluidized bed.
    Type: Grant
    Filed: July 27, 2021
    Date of Patent: April 23, 2024
    Assignee: TOTALENERGIES ONETECH
    Inventors: Gleb Veryasov, Nikolai Nesterenko, Walter Vermeiren
  • Patent number: 11911756
    Abstract: Process to conduct a steam cracking reaction in a fluidized bed reactor The disclosure relates to a process to perform a steam cracking reaction, said process comprising the steps of providing a fluidized bed reactor comprising at least two electrodes; and a bed comprising particles, wherein the particles are put in a fluidized state by passing upwardly through the said bed a fluid stream, to obtain a fluidized bed; heating the fluidized bed to a temperature ranging from 500° C. to 1200° C. to conduct the endothermic chemical reaction; wherein at least 10 wt. % of the particles based on the total weight of the particles of the bed are electrically conductive particles and have a resistivity ranging from 0.001 Ohm·cm to 500 Ohm·cm at 800° C. and in that the step of heating the fluidized bed is performed by passing an electric current through the fluidized bed.
    Type: Grant
    Filed: July 27, 2021
    Date of Patent: February 27, 2024
    Assignee: TOTALENERGIES ONETECH
    Inventors: Gleb Veryasov, Nikolai Nesterenko, Walter Vermeiren
  • Patent number: 11840509
    Abstract: The disclosure relates to a process to perform an endothermic dehydrogenation and/or aromatization reaction of hydrocarbons, said process comprising the steps of providing at least one fluidized bed reactor comprising at least two electrodes and a bed comprising particles; putting the particles in a fluidized state to obtain a fluidized bed; heating the fluidized bed to a temperature ranging from 480° C. to 700° C. to conduct the reaction; and obtaining a reactor effluent containing hydrogen, unconverted hydrocarbons, and olefins and/or aromatics; wherein the particles of the bed comprise electrically conductive particles and particles of a catalytic composition, wherein at least 10 wt. % of the particles are electrically conductive particles and have a resistivity ranging from 0.001 Ohm·cm to 500 Ohm·cm at 500° C. and wherein the step of heating the fluidized bed is performed by passing an electric current of through the fluidized bed.
    Type: Grant
    Filed: July 27, 2021
    Date of Patent: December 12, 2023
    Assignee: TOTALENERGIES ONETECH
    Inventors: Gleb Veryasov, Nikolai Nesterenko, Walter Vermeiren
  • Publication number: 20230323224
    Abstract: A process for purification a hydrocarbon stream including: (a) Providing a hydrocarbon stream having a diene value of at least 1.0, a bromine number of at least 5 g and containing at least 10 wt % of pyrolysis plastic oil; b) contacting the effluent obtained in step a) with a silica gel, clays, alkaline or alkaline earth metal oxide, iron oxide, ion exchange resins, active carbon, active aluminium oxide, molecular sieves, alkaline oxide and/or porous supports, and/or silica gel, or any mixture thereof; c) performing a first hydrotreating step; d) contacting the effluent obtained in step c) with silica gel, clays, alkaline or alkaline earth metal oxide, iron oxide, ion exchange resins, active carbon, active aluminium oxide, molecular sieves, alkaline oxide and/or porous supports and silica gel, or any mixture thereof; e) performing a second hydrotreating step; and f) recovering a purified hydrocarbon stream.
    Type: Application
    Filed: April 6, 2021
    Publication date: October 12, 2023
    Applicant: TotalEnergies OneTech Belgium
    Inventors: Cindy ADAM, Delphine MINOUX, Walter VERMEIREN, Sébastien LEPLAT, Emmanuel VAN LOOCK, Christophe BRETON
  • Publication number: 20230295062
    Abstract: The disclosure relates to a process to perform an endothermic dehydrogenation and/or aromatization reaction of hydrocarbons, said process comprising the steps of providing at least one fluidized bed reactor comprising at least two electrodes and a bed comprising particles; putting the particles in a fluidized state to obtain a fluidized bed; heating the fluidized bed to a temperature ranging from 480° C. to 700° C. to conduct the reaction; and obtaining a reactor effluent containing hydrogen, unconverted hydrocarbons, and olefins and/or aromatics; wherein the particles of the bed comprise electrically conductive particles and particles of a catalytic composition, wherein at least 10 wt. % of the particles are electrically conductive particles and have a resistivity ranging from 0.001 Ohm·cm to 500 Ohm·cm at 500° C. and wherein the step of heating the fluidized bed is performed by passing an electric current of through the fluidized bed.
    Type: Application
    Filed: July 27, 2021
    Publication date: September 21, 2023
    Inventors: Gleb VERYASOV, Nikolai NESTERENKO, Walter VERMEIREN
  • Publication number: 20230294059
    Abstract: Process to conduct a steam cracking reaction in a fluidized bed reactor The disclosure relates to a process to perform a steam cracking reaction, said process comprising the steps of providing a fluidized bed reactor comprising at least two electrodes; and a bed comprising particles, wherein the particles are put in a fluidized state by passing upwardly through the said bed a fluid stream, to obtain a fluidized bed; heating the fluidized bed to a temperature ranging from 500° C. to 1200° C. to conduct the endothermic chemical reaction; wherein at least 10 wt. % of the particles based on the total weight of the particles of the bed are electrically conductive particles and have a resistivity ranging from 0.001 Ohm·cm to 500 Ohm·cm at 800° C. and in that the step of heating the fluidized bed is performed by passing an electric current through the fluidized bed.
    Type: Application
    Filed: July 27, 2021
    Publication date: September 21, 2023
    Inventors: Gleb VERYASOV, Nikolai NESTERENKO, Walter VERMEIREN
  • Publication number: 20230287282
    Abstract: A process for the purification of a hydrocarbon stream including: (a) Providing a hydrocarbon stream having a diene value of at least 1.0 and a bromine number of at least 5 gBr2/100 g and containing pyrolysis plastic oil; (b) Optionally contact the hydrocarbon stream obtained in step (a) with a silica gel, clays, alkaline or alkaline earth metal oxide, iron oxide, ion exchange resins, active carbon, active aluminum oxide, molecular sieves, alkaline oxide and/or porous supports and silica gel, or any mixture thereof; (c) Heating the stream obtained in step a) or b) followed by a mixing of the heated stream with a second diluent heated at a temperature of at least 300° C. preferably at least 330° C.; (d) performing an hydroprocessing step at a temperature of at least 250° C. in the presence of H2; and (e) recovering a purified hydrocarbon stream.
    Type: Application
    Filed: April 6, 2021
    Publication date: September 14, 2023
    Applicant: TotalEnergies OneTech Belgium
    Inventors: Cindy ADAM, Delphine MINOUX, Walter VERMEIREN, Sébastien LEPLAT, Emmanuel VAN LOOCK, Christophe BRETON
  • Publication number: 20230271899
    Abstract: The disclosure relates to a process to perform an endothermic methane pyrolysis reaction, said process comprising the steps of providing at least one fluidized bed reactor comprising at least two electrodes; and a bed comprising particles, wherein the particles are put in a fluidized state by passing upwardly through the said bed a fluid stream, to obtain a fluidized bed; heating the fluidized bed to a temperature ranging from 500° C. to 1200° C. to conduct the endothermic methane pyrolysis reaction; wherein the particles of the bed comprise electrically conductive particles and particles of a catalytic composition; wherein at least 10 wt. % of the particles are electrically conductive particles and have a resistivity ranging from 0.001 Ohm·cm to 500 Ohm·cm at 800° C. and wherein the step of heating the fluidized bed is performed by passing an electric current through the fluidized bed.
    Type: Application
    Filed: July 27, 2021
    Publication date: August 31, 2023
    Inventors: Gleb VERYASOV, Nikolai NESTERENKO, Walter VERMEIREN
  • Publication number: 20230271831
    Abstract: The disclosure relates to a process to perform an endothermic steam reforming of hydrocarbons, said process comprising the steps of providing a fluidized bed reactor comprising at least two electrodes and a bed comprising particles, wherein the particles are put in a fluidized state to obtain a fluidized bed; heating the fluidized bed to a temperature ranging from 500° C. to 1200° C. by passing an electric current through the fluidized bed to conduct the endothermic reaction. The process is remarkable in that the particles of the bed comprise electrically conductive particles and particles of a catalytic composition, wherein at least 10 wt. % of the particles are electrically conductive particles and have a resistivity ranging from 0.001 to 500 Ohm·cm at 800° C. and in that the step of heating the fluidized bed is performed by passing an electric current through the fluidized bed.
    Type: Application
    Filed: July 27, 2021
    Publication date: August 31, 2023
    Inventors: Gleb VERYASOV, Nikolai NESTERENKO, Walter VERMEIREN
  • Publication number: 20230271900
    Abstract: The disclosure relates to a process to perform a catalytic cracking reaction of hydrocarbons having at least four carbons, said process comprising the steps of providing a fluidized bed reactor comprising at least two electrodes and a bed comprising particles, wherein the particles are put in a fluidized state to obtain a fluidized bed; heating said bed to a temperature between 500° C. and 850° C. by passing an electric current through the fluidized bed to conduct the reaction. The process is remarkable in that the particles of the bed comprise electrically conductive particles and particles of a catalytic composition, wherein at least 10 wt. % of the particles are electrically conductive particles and have a resistivity from 0.001 to 500 Ohm.cm at 500° C. and in that the step of heating the fluidized bed is performed by passing an electric current through the fluidized bed.
    Type: Application
    Filed: July 27, 2021
    Publication date: August 31, 2023
    Inventors: Gleb VERYASOV, Nikolai NESTERENKO, Walter VERMEIREN
  • Patent number: 11549062
    Abstract: The present invention relates to a process for the conversion of a feedstock comprising at least 50 wt % related to the total weight of the feedstock of triglycerides, fatty acid esters and/or fatty acids having at least 10 carbon atoms into hydrogen, olefins, dienes, aromatics, gasoline, diesel fuel, jet fuel, naphtha and liquefied petroleum gas comprising: a) introducing of said feedstock in a first reactor to produce linear paraffins in presence of a hydrodesulfurization catalyst and hydrogen, b) separating the effluent of said first reactor in at least three parts to produce at least a first stream comprising part of said linear paraffins and at least a second stream comprising part of said linear paraffins, and at least a third stream comprising part of said linear paraffins c) sending said first stream to a steam cracker to produce hydrogen, olefins, dienes, aromatics and gasoline, diesel fuel being further fractionated; d) introducing said second stream into a second reactor in presence of a hydrocr
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: January 10, 2023
    Assignee: Total Research & Technology Feluy
    Inventor: Walter Vermeiren
  • Publication number: 20220348521
    Abstract: The disclosure provides for a process for a non-catalytic oxidative coupling of methane reaction remarkable in that the process comprises a step of providing a counter-current shell-tube reactor comprising at least two tubes defining a tubular part and a shell part surrounding the tubular part and at least one inlet to feed a gaseous feed stream and at least one outlet to discharge a product stream; a step of providing a gaseous feed stream comprising a gas mixture of methane and oxygen in a defined molar ratio and preheated to a defined operating inlet temperature; a step of feeding the gaseous feed stream at least in the tubular part of the counter-current shell-tube reactor and a step of recovering a product stream.
    Type: Application
    Filed: April 28, 2022
    Publication date: November 3, 2022
    Inventors: Ana Obradovic, Walter Vermeiren, Christophe Thille, Jean-Pierre Dath
  • Patent number: 11485691
    Abstract: The disclosure provides for a process for a non-catalytic oxidative coupling of methane reaction remarkable in that the process comprises a step of providing a counter-current shell-tube reactor comprising at least two tubes defining a tubular part and a shell part surrounding the tubular part and at least one inlet to feed a gaseous feed stream and at least one outlet to discharge a product stream; a step of providing a gaseous feed stream comprising a gas mixture of methane and oxygen in a defined molar ratio and preheated to a defined operating inlet temperature; a step of feeding the gaseous feed stream at least in the tubular part of the counter-current shell-tube reactor and a step of recovering a product stream.
    Type: Grant
    Filed: April 28, 2022
    Date of Patent: November 1, 2022
    Assignee: TOTALENERGIES ONETECH
    Inventors: Ana Obradovic, Walter Vermeiren, Christophe Thille, Jean-Pierre Dath
  • Patent number: 11255604
    Abstract: A process for removing light components from an ethylene stream may include providing a dried ethylene stream containing ethylene, ethane, CO, CO2, H2, CH4, and C3+ hydrocarbons. The process may include sending the dried ethylene stream to a stripper to produce an overhead stream containing ethylene, CO, H2 and CH4, and a bottom stream containing ethylene, ethane, CO2, and C3+ hydrocarbons. The gaseous phase on top of the stripper may be condensed in a heat exchanger cooled by a refrigerant stream to get a first gaseous phase and a first liquid phase. The first gaseous phase may be condensed in a heat exchanger cooled by liquid ethane or liquid ethylene to get a second gaseous phase containing ethylene CO, H2 and CH4 and a second liquid phase. The first and second liquid phases may be the reflux of the stripper.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: February 22, 2022
    Assignee: Total Research & Technology Feluy
    Inventors: Walter Vermeiren, Catherine Boutrot, Manuela Arratia
  • Patent number: 11124708
    Abstract: The present invention relates to a process for the production of high value chemicals, preferably including at least ethylene and propylene, by steam cracking a mixture of non-cyclic paraffin stream (A) comprising at least 90% of components having at least 12 carbon atoms, with either a mixture of hydrocarbons having from 3 to 4 carbon atoms or a mixture of hydrocarbons comprising at least 90% of components having a boiling point ranging from 15° C. to 200° C.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: September 21, 2021
    Assignee: Total Research & Technology Feluy
    Inventors: Walter Vermeiren, Valérie Vanrysselberghe
  • Publication number: 20210207038
    Abstract: The present invention relates to a process for the conversion of a feedstock comprising at least 50 wt % related to the total weight of the feedstock of triglycerides, fatty acid esters and/or fatty acids having at least 10 carbon atoms into hydrogen, olefins, dienes, aromatics, gasoline, diesel fuel, jet fuel, naphtha and liquefied petroleum gas comprising: a) introducing of said feedstock in a first reactor to produce linear paraffins in presence of a hydrodesulfurization catalyst and hydrogen, b) separating the effluent of said first reactor in at least three parts to produce at least a first stream comprising part of said linear paraffins and at least a second stream comprising part of said linear paraffins, and at least a third stream comprising part of said linear paraffins c) sending said first stream to a steam cracker to produce hydrogen, olefins, dienes, aromatics and gasoline, diesel fuel being further fractionated; d) introducing said second stream into a second reactor in presence of a hydrocr
    Type: Application
    Filed: May 28, 2019
    Publication date: July 8, 2021
    Inventor: Walter Vermeiren
  • Publication number: 20210207041
    Abstract: The invention relates a process for the catalytic hydrotreating of a feedstock of petroleum origin of diesel fuel type introduced into a stationary bed hydrotreating unit upstream of a feedstock of natural occurring oil(s) characterized in that the feedstock of natural occurring oil(s) contains acyl-containing compounds having 10 to 24 carbons including fatty acid esters and free fatty acids and said feedstock of natural occurring oil(s) is submitted to a refining by a hydrodynamic cavitation before its introduction into the stationary bed processing.
    Type: Application
    Filed: May 28, 2019
    Publication date: July 8, 2021
    Inventors: Walter Vermeiren, Cindy Adam
  • Publication number: 20210198584
    Abstract: The present invention relates to the production of high value bio-chemicals, in particular bio-paraffins, bio-LPG, bio-naphtha, bio-jet and bio-distillates in an integrated bio-refinery from complex mixtures of natural occurring fats & oils. The present invention discloses a process for the production of such bio-chemicals, from natural occurring oil(s) containing acyl-containing compounds having 10 to 24 carbons including fatty acid esters and free fatty acids, and other components including impurities. Natural occurring oil(s) is(are) refined before treatment in a hydroprocessing step. The refining used in the present invention includes a hydrodynamic cavitation to remove impurities which might deteriorate the subsequent hydroprocessing step.
    Type: Application
    Filed: May 28, 2019
    Publication date: July 1, 2021
    Inventors: Walter Vermeiren, Cindy Adam
  • Patent number: 10544067
    Abstract: The present invention is a process for dehydrating an alcohol to prepare corresponding olefin(s), comprising: (a) providing a feed (A) comprising at least an alcohol having at least 2 carbon atoms, and preferably at most 5 carbon atoms, or a mixture thereof optionally water, optionally an inert component, in a dehydration unit, (b) placing the feed (A) into contact with an acidic catalyst in a reaction zone of said dehydration unit at conditions effective to dehydrate at least a portion of the alcohol to make an olefin or a mixture of olefins having the same number of carbon atoms as the alcohol, (c) recovering from said dehydration unit an effluent (B) comprising: an olefin or a mixture of olefins, water, undesired by-products including aldehydes and lighter products resulting from degradation of said aldehydes under the conditions of step (b), optionally unconverted alcohol(s) if any, optionally the inert component, wherein, said feed (A)-providing step (a) comprises adding an effective amount of one
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: January 28, 2020
    Assignee: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Delphine Minoux, Nikolai Nesterenko, Cindy Adam, Walter Vermeiren, Philip De Smedt, Jean-Pierre Dath, Vincent Coupard, Sylvie Maury, Nicolas Aribert