Patents by Inventor Walter Weissman

Walter Weissman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8603325
    Abstract: A biomass pyrolysis oil is used as a co-feed for a heavy petroleum oil coking process to improve the operation of the coking process and to utilize biomaterial for the production of transportation fuels. The coking process may be a delayed coking process or a fluidized bed coking process and in each case, the presence of the biomass pyrolysis oil will decrease the coke drying time while reducing coke handling problems in the unit besides forming a superior coke product. In the case of a fluidized bed coking process using a gasifier for the coke, the addition of an alkali metal salt improves the operation of the gasifier.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: December 10, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Glen E. Phillips, Simon R. Kelemen, Walter Weissman
  • Publication number: 20130315808
    Abstract: Provided are improved exhaust gas cleaning systems and methods for treating exhaust gas from a combustion source that include a hydrogen generation system, a regenerable sulfur oxides trap, and a regenerable nitrogen storage reduction (NSR) catalyst trap. The improved exhaust gas cleaning systems and methods allow for the sulfur released from the sulfur trap to pass through the nitrogen oxide trap with no or little poisoning of NOx storage and reduction sites, which significantly improves NSR catalyst trap lifetime and performance to meet future emissions standards. The disclosed exhaust gas cleaning systems are suitable for use in internal combustion engines (e.g., diesel, gasoline, CNG) which operate with lean air/fuel ratios over most of the operating period.
    Type: Application
    Filed: July 2, 2013
    Publication date: November 28, 2013
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: El-Mekki El-Malki, Walter Weissman, Paul James Polini
  • Patent number: 8507404
    Abstract: Provided are improved regenerable SOx trap formulations for on-board vehicle applications. The regenerable sulfur trap formulations reduce the rate of sulfur poisoning of a downstream nitrogen storage reduction (NSR) catalyst trap in exhaust gas cleaning systems for combustion engines by adsorbing SOx as metal sulfate under lean exhaust conditions and desorbing the accumulated SOx under rich exhaust conditions. The regenerable sulfur oxides trap catalyst compositions include a metal (M) oxide, wherein M is selected from Cu, Fe, Mn, Ag, Co and combinations thereof and a metal (M)-La—Zr oxide, wherein M is selected from Cu, Fe, Mn, Ag, Co and combinations thereof. In addition, provided are improved exhaust gas cleaning systems and methods for treating exhaust gas from a combustion source that include a hydrogen generation system, a regenerable sulfur oxides trap, and a regenerable nitrogen storage reduction (NSR) catalyst trap.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: August 13, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: El-Mekki El-Malki, Walter Weissman, Paul J. Polini
  • Publication number: 20130180593
    Abstract: The present invention is a heat pipe having a specified volume of working fluid determined in relation to the interior volume of the heat pipe and a target temperature TT, to provide self-temperature regulation and pressure management. The heat pipe comprises at least a evaporator region and a condenser region having a known interior volume V and a mass of working fluid given by the relationship Mwf=Dwf at TT×V where Dwf is the density of the saturated vapor of the fluid at temperature TT plus an amount of additional working fluid sufficient to have the rate of evaporation about equal to the rate of condensation for the particular heat pipe configuration. The heat pipe has at least the condenser region having an interior coating of a hydrophobic material.
    Type: Application
    Filed: January 16, 2012
    Publication date: July 18, 2013
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Ramesh Gupta, Walter Weissman, George P. Walchuk, Randall D. Partridge, Mohsen S. Yeganeh
  • Publication number: 20120085126
    Abstract: A distillation system for separating components fluid feed includes a stripper and a rectifier. The stripper includes an inlet to receive a feed of fluid a compressor in fluid communication with a more volatile portion of the fluid within the stripper to provide an output feed, and a reboiler in fluid communication with a less volatile portion of fluid within the stripper. The rectifier receives the output feed and includes a condenser in fluid communication with a more volatile portion of the output feed from the compressor, the condenser including an exit to remove at least one component from the more volatile portion of the output feed, and an outlet to recycle a less volatile portion of the output feed back to the stripper. Heat pipes transfer thermal energy from the rectifier to the stripper.
    Type: Application
    Filed: October 3, 2011
    Publication date: April 12, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Ramesh GUPTA, Walter WEISSMAN, Berne K. STOBER, Ian A. CODY
  • Patent number: 8051828
    Abstract: A fuel management system mounted on a vehicle is operative to feed individually or a mixture of grades of relatively low, intermediate, and high autoignition temperature fuels to an associated internal combustion engine. The system includes an on board separation unit (OBS unit) for receiving and separating intermediate autoignition temperature (IAT) fuel into low and high autoignition temperature fuels, LAT and HAT, respectively. The production rate of the LAT and HAT fuels by the OBS unit is controlled to substantially match the consumption requirements of the engine at any given time for the LAT and HAT fuels.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: November 8, 2011
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Bhaskar Sengupta, Krishnan Kumaran, Walter Weissman, Randall D. Partridge, Kouseki Sugiyama, Keiji Yoeda, Tomihisa Oda, Yoshihiro Iwashita
  • Publication number: 20110233042
    Abstract: Biomass is used as a co-feed for a heavy petroleum oil coking process to improve the operation of the coking process and to utilize biomaterial for the production of transportation fuels. The coking process may be a delayed coking process or a fluidized bed coking process and in each case, the presence of the biomass will decrease the coke drying time so reducing coke handling problems in the unit besides forming a superior coke product. In the case of a fluidized bed coking process using a gasifier for the coke, the addition of an alkali metal salt improves the operation of the gasifier.
    Type: Application
    Filed: March 1, 2011
    Publication date: September 29, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Michael SISKIN, Glen E. PHILLIPS, Simon R. KELEMEN, Walter WEISSMAN
  • Publication number: 20110232164
    Abstract: A biomass pyrolysis oil is used as a co-feed for a heavy petroleum oil coking process to improve the operation of the coking process and to utilize biomaterial for the production of transportation fuels. The coking process may be a delayed coking process or a fluidized bed coking process and in each case, the presence of the biomass pyrolysis oil will decrease the coke drying time while reducing coke handling problems in the unit besides forming a superior coke product. In the case of a fluidized bed coking process using a gasifier for the coke, the addition of an alkali metal salt improves the operation of the gasifier.
    Type: Application
    Filed: March 1, 2011
    Publication date: September 29, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Michael SISKIN, Glen E. PHILLIPS, Simon R. KELEMEN, Walter WEISSMAN
  • Publication number: 20110139687
    Abstract: The present invention relates to methods and systems for removing polar molecule contaminants from a refinery stream in connection with the processing of hydrocarbon fluids, chemicals, whole crude oils, blends and fractions in refineries and chemical plants that include adding high surface energy and/or high surface area nanoparticle compounds to a refinery stream to remove the polar molecule contaminants.
    Type: Application
    Filed: September 30, 2010
    Publication date: June 16, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Mohsen S. YEGANEH, Peter W. JACOBS, Ian A. CODY, Steven W. LEVINE, Eric B. SIROTA, Ramesh GUPTA, Walter WEISSMAN
  • Publication number: 20100320120
    Abstract: Heat from nuclear reactor as a source of thermal energy is applied to the conversion of carbonaceous materials such as heavy petroleum crude oils, coals and biomass to liquid hydrocarbons. The heat is applied to provide at least a portion of the process heat used in the high temperature, short contact time hydropyrolysis of the carbonaceous material which is supplied with hydrogen generated by a high temperature process such as high temperature steam electrolysis, the sulfur-iodine cycle, the hybrid sulfur cycle, the zinc-zinc oxide cycle, a solid oxide fuel cell or by methane steam cracking. The heat from the nuclear reactor may be used to generate electricity to operate high temperature steam electrolysis used in generation of the hydrogen. By the use of nuclear thermal energy, hydrocarbon resource utilization for process heat is eliminated along with carbon dioxide evolution associated with burning of the hydrocarbon resource to generate process heat.
    Type: Application
    Filed: May 4, 2010
    Publication date: December 23, 2010
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Michael SISKIN, Ramesh VARADARAJ, Walter WEISSMAN, Mark A. GREANEY
  • Publication number: 20100314235
    Abstract: Heat from a concentrated solar power source is applied to the conversion of carbonaceous materials such as heavy petroleum crude oils, coals and biomass to liquid hydrocarbons. The solar heat is applied to provide at least a portion of the process heat used in the high temperature, short contact time hydropyrolysis of the carbonaceous material which is supplied with hydrogen generated by a high temperature process such as high temperature steam electrolysis, the sulfur-iodine cycle, the hybrid sulfur cycle, the zinc-zinc oxide cycle or by methane steam cracking. The heat from the solar source may be used to generate electricity to operate high temperature steam electrolysis used in generation of the hydrogen. By the use of solar thermal energy sources, hydrocarbon resource utilization for process heat is eliminated along with carbon dioxide evolution associated with burning of the hydrocarbon resource to generate process heat.
    Type: Application
    Filed: May 4, 2010
    Publication date: December 16, 2010
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Ramesh VARADARAJ, Michael SISKIN, Walter WEISSMAN, Mark A. GREANEY
  • Patent number: 7842124
    Abstract: This invention relates to a polymeric membrane composition comprising an associating polymer. The polymer coating is characterized as having hard and soft segments where the hard segment comprises TMPA, combined with HDPA. The membrane may utilize a porous substrate.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: November 30, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Randall D. Partridge, Dennis G. Peiffer, David C. Dalrymple, Walter Weissman
  • Patent number: 7803275
    Abstract: The present invention pertains to a process for the separation of aromatics from a feed stream, including aromatics and non-aromatics by selectively permeating the aromatics through a membrane comprising feeding a mixed phase vapor-liquid feed to a membrane wherein said liquid phase preferentially wets the surface of the membrane.
    Type: Grant
    Filed: July 10, 2007
    Date of Patent: September 28, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Randall D. Partridge, Walter Weissman, Bal K. Kaul, Craig Y. Sabottke, Sanjay K. Bhatia
  • Patent number: 7708151
    Abstract: This invention relates to a polymeric membrane composition utilizing the non-hazardous compound 4-aminophenyl disulfide (“APD”), a method of making the polymeric membrane, and a process for separating components of a feedstream utilizing the polymeric membrane. More particularly, but not by way of limitation, this invention relates to utilizing the polymeric membrane composition in a process for the separation of aromatics from a hydrocarbon feedstream containing aromatics and aliphatic compounds.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: May 4, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Dennis G. Peiffer, Randall D. Partridge, Walter Weissman, David C. Dalrymple, Craig Y. Sabottke
  • Publication number: 20100062186
    Abstract: A ultra-thin polymeric membrane is made by coating a porous substrate, such as a ceramic monolith, with a solution of a polymer colloid, then drying the solution to form the film. The polymer is an associating polymer. The resulting membrane may be used for separating hydrocarbon species, for example.
    Type: Application
    Filed: June 23, 2009
    Publication date: March 11, 2010
    Inventors: Dennis G. Peiffer, Randall D. Partridge, Walter Weissman, David C. Dalrymple
  • Publication number: 20090242038
    Abstract: A fuel management system mounted on a vehicle is operative to feed individually or a mixture of grades of relatively low, intermediate, and high autoignition temperature fuels to an associated internal combustion engine. The system includes an on board separation unit (OBS unit) for receiving and separating intermediate autoignition temperature (IAT) fuel into low and high autoignition temperature fuels, LAT and HAT, respectively. The production rate of the LAT and HAT fuels by the OBS unit is controlled to substantially match the consumption requirements of the engine at any given time for the LAT and HAT fuels.
    Type: Application
    Filed: December 9, 2008
    Publication date: October 1, 2009
    Inventors: Bhaskar Sengupta, Krishnan Kumaran, Walter Weissman, Randall D. Partridge
  • Publication number: 20090165759
    Abstract: A fuel management system mounted on a vehicle is operative to feed an individual grade or a mixture of grades of relatively low, intermediate, and high RON fuels, from respective tanks to an associated internal combustion engine. The system includes an on board separation unit (OBS unit) for receiving and separating intermediate RON fuel, from an IRON tank into low and high RON fuels, LRON and HRON, respectively, for delivery to LRON and HRON tanks, respectively. The production rate of the LRON and HRON fuels by the OBS unit is controlled to substantially match the consumption requirements of the engine at any given time for the LRON and HRON fuels.
    Type: Application
    Filed: December 19, 2008
    Publication date: July 2, 2009
    Inventors: Bhaskar Sengupta, Krishnan Kumaran, Walter Weissman, Randall D. Partridge
  • Patent number: 7523770
    Abstract: A service station is provided with a plurality of vehicle servicing islands including liquid fuel blending pumps for dispensing and blending fuel components from underground storage tanks for refueling standard gasoline engine driven vehicles, standard diesel engine vehicles, vehicles with engines requiring dual fuels, vehicles with HCCL engines require low octane gasoline blended with standard diesel fuel, and fuel cell powered vehicles having onboard reformers. Other service islands include pumps for dispensing compressed hydrogen to fuel cell powered vehicles that do not include onboard reformers. In addition, service islands are provided for recharging the batteries of pure electric powered vehicles. A service station is further provided with a wireless communicator for receiving signals indicative of a vehicle's fuel requirements and transmitting signals to direct the vehicle to a service island capable of servicing the vehicle.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: April 28, 2009
    Assignee: ExxonMobil Research And Enginnering Company
    Inventors: Alan M. Horowitz, Walter Weissman, Charles Hall Schleyer
  • Publication number: 20080307779
    Abstract: Provided are improved regenerable SOx trap formulations for on-board vehicle applications. The regenerable sulfur trap formulations reduce the rate of sulfur poisoning of a downstream nitrogen storage reduction (NSR) catalyst trap in exhaust gas cleaning systems for combustion engines by adsorbing SOx as metal sulfate under lean exhaust conditions and desorbing the accumulated SOx under rich exhaust conditions. The regenerable sulfur oxides trap catalyst compositions include a metal (M) oxide, wherein M is selected from Cu, Fe, Mn, Ag, Co and combinations thereof and a metal (M)-La—Zr oxide, wherein M is selected from Cu, Fe, Mn, Ag, Co and combinations thereof. In addition, provided are improved exhaust gas cleaning systems and methods for treating exhaust gas from a combustion source that include a hydrogen generation system, a regenerable sulfur oxides trap, and a regenerable nitrogen storage reduction (NSR) catalyst trap.
    Type: Application
    Filed: April 10, 2008
    Publication date: December 18, 2008
    Inventors: El-Mekki El-Malki, Walter Weissman, Paul J. Polini
  • Patent number: 7389638
    Abstract: The present invention relates to an improved exhaust gas cleaning system and method for a combustion source comprising a hydrogen generation system, a sulfur oxides trap, and a nitrogen storage reduction (NSR) catalyst trap. The improved exhaust gas cleaning system and method of the present invention also provides for a water-gas-shift catalyst between the sulfur oxides trap and the NSR catalyst trap, and a clean-up catalyst downstream of the NSR catalyst trap. The invention provides also a sulfur trap regenerable at moderate temperatures with rich pulses, rather than at high temperatures. The improved exhaust gas cleaning system of the present invention provides for the sulfur released from the sulfur trap to pass through the nitrogen oxide trap with no or little poisoning of NOx storage and reduction sites, which significantly improves NSR catalyst trap lifetime and performance to meet future emissions standards.
    Type: Grant
    Filed: July 12, 2005
    Date of Patent: June 24, 2008
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Walter Weissman, El Mekki El Malki