Patents by Inventor Wayne D. Meyer

Wayne D. Meyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11421311
    Abstract: Disclosed herein is a method of forming a high strength aluminum alloy. The method comprises heating an aluminum material to a solutionizing temperature for a solutionizing time such that the magnesium and zinc are dispersed throughout the extruded aluminum material to form a solutionized aluminum material. The method includes quenching the solutionized aluminum material to form a quenched aluminum material. The method also includes aging the quenched aluminum material to form an aluminum alloy, then subjecting the aluminum alloy to an ECAE process to form a high strength aluminum alloy.
    Type: Grant
    Filed: November 5, 2020
    Date of Patent: August 23, 2022
    Assignee: Honeywell International Inc.
    Inventors: Stephane Ferrasse, Wayne D. Meyer, Frank C. Alford, Marc D. Ruggiero, Patrick K. Underwood, Susan D. Strothers
  • Patent number: 11248286
    Abstract: A method of forming a high strength aluminum alloy. The method comprises subjecting an aluminum material containing at least one of magnesium, manganese, silicon, copper, and zinc at a concentration of at least 0.1% by weight to an equal channel angular extrusion (ECAE) process. The method produces a high strength aluminum alloy having an average grain size from about 0.2 ?m to about 0.8 ?m and a yield strength from about 300 MPa to about 650 MPa.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: February 15, 2022
    Assignee: Honeywell International Inc.
    Inventors: Stephane Ferrasse, Susan D. Strothers, Patrick K. Underwood, Marc D. Ruggiero, Wayne D. Meyer, Lucia M. Feng, Frank C. Alford
  • Publication number: 20210054490
    Abstract: Disclosed herein is a method of forming a high strength aluminum alloy. The method comprises heating an aluminum material to a solutionizing temperature for a solutionizing time such that the magnesium and zinc are dispersed throughout the extruded aluminum material to form a solutionized aluminum material. The method includes quenching the solutionized aluminum material to form a quenched aluminum material. The method also includes aging the quenched aluminum material to form an aluminum alloy, then subjecting the aluminum alloy to an ECAE process to form a high strength aluminum alloy.
    Type: Application
    Filed: November 5, 2020
    Publication date: February 25, 2021
    Inventors: Stephane Ferrasse, Wayne D. Meyer, Frank C. Alford, Marc D. Ruggiero, Patrick K. Underwood, Susan D. Strothers
  • Patent number: 10851447
    Abstract: Disclosed herein is a method of forming a high strength aluminum alloy. The method comprises heating an aluminum material to a solutionizing temperature for a solutionizing time such that the magnesium and zinc are dispersed throughout the extruded aluminum material to form a solutionized aluminum material. The method includes quenching the solutionized aluminum material to form a quenched aluminum material. The method also includes aging the quenched aluminum material to form an aluminum alloy, then subjecting the aluminum alloy to an ECAE process to form a high strength aluminum alloy.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: December 1, 2020
    Assignee: Honeywell International Inc.
    Inventors: Stephane Ferrasse, Wayne D. Meyer, Frank C. Alford, Marc D. Ruggiero, Patrick K. Underwood, Susan D. Strothers
  • Publication number: 20200270730
    Abstract: A method of forming a high strength aluminum alloy. The method comprises subjecting an aluminum material containing at least one of magnesium, manganese, silicon, copper, and zinc at a concentration of at least 0.1% by weight to an equal channel angular extrusion (ECAE) process. The method produces a high strength aluminum alloy having an average grain size from about 0.2 ?m to about 0.8 ?m and a yield strength from about 300 MPa to about 650 MPa.
    Type: Application
    Filed: March 16, 2020
    Publication date: August 27, 2020
    Inventors: Stephane Ferrasse, Susan D. Strothers, Patrick K. Underwood, Marc D. Ruggiero, Wayne D. Meyer, Lucia M. Feng, Frank C. Alford
  • Publication number: 20180218890
    Abstract: A high surface area coil for use with a physical vapor deposition apparatus comprising a first surface. At least a portion of the first surface has a macrotexture with a surface roughness between about 15 ?m and about 150 ?m. At least a portion of the first surface has a microtexture with a surface roughness between about 2 ?m and 15 ?m.
    Type: Application
    Filed: July 18, 2016
    Publication date: August 2, 2018
    Inventors: John A. DUNLOP, Kevin T. HUBERT, Jacob C. RUZICKA, Andrew N.A. WRAGG, Michael D. BLONDELL, William P. JARDEE, Phillip F. JOHN, Edward P. LARA, Wayne D. MEYER, Adam P. DAUB, Scott A. BUCKHART, Travis C. JUNTTILA
  • Publication number: 20180155811
    Abstract: A method of forming a high strength aluminum alloy. The method comprises subjecting an aluminum material containing at least one of magnesium, manganese, silicon, copper, and zinc at a concentration of at least 0.1% by weight to an equal channel angular extrusion (ECAE) process. The method produces a high strength aluminum alloy having an average grain size from about 0.2 ?m to about 0.8 ?m and a yield strength from about 300 MPa to about 650 MPa.
    Type: Application
    Filed: November 28, 2017
    Publication date: June 7, 2018
    Inventors: Stephane Ferrasse, Susan D. Strothers, Patrick K. Underwood, Marc D. Ruggiero, Wayne D. Meyer, Lucia M. Feng, Frank C. Alford
  • Publication number: 20180155812
    Abstract: Disclosed herein is a method of forming a high strength aluminum alloy. The method comprises heating an aluminum material to a solutionizing temperature for a solutionizing time such that the magnesium and zinc are dispersed throughout the extruded aluminum material to form a solutionized aluminum material. The method includes quenching the solutionized aluminum material to form a quenched aluminum material. The method also includes aging the quenched aluminum material to form an aluminum alloy, then subjecting the aluminum alloy to an ECAE process to form a high strength aluminum alloy.
    Type: Application
    Filed: November 28, 2017
    Publication date: June 7, 2018
    Inventors: Stephane Ferrasse, Wayne D. Meyer, Frank C. Alford, Marc D. Ruggiero, Patrick K. Underwood, Susan D. Strothers
  • Publication number: 20180044761
    Abstract: A method of purifying and casting a material comprising placing a material to be purified within a crucible, the crucible located within a purification chamber; providing thermal energy to the material to maintain the material in a molten state; providing a purification gas into the molten material to purify the material until a first measured condition is attained; passing the material in a fluid state from the purification chamber having a first atmosphere to a casting chamber having a second atmosphere, the purification chamber in fluid communication with the casting chamber such that the material passes from the purification chamber to the casting chamber without exposure to a third atmosphere; placing the material into a mold within the casting chamber; cooling the material within the mold to form a cast material.
    Type: Application
    Filed: February 25, 2016
    Publication date: February 15, 2018
    Inventors: Glenn M. Mitchell, Suresh Sundarraj, Wayne D. Meyer, Jianxing Li, David E. Steele, Marc D. Ruggiero