Patents by Inventor Wayne E. Stark

Wayne E. Stark has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190271776
    Abstract: A radar system has different modes of operation. In a method for operating the radar system, at least one of one or more transmitters are configured to transmit modulated continuous-wave radio signals, while at least one of one or more receivers are configured to receive radio signals. The received radio signals include the transmitted radio signals transmitted by the one or more transmitters and reflected from objects in the environment. The method further includes selectively modifying an operational parameter of at least one of the transmitters or at least one of the receivers. The selected operational parameter is modified to meet changing operational requirements of the radar sensing system.
    Type: Application
    Filed: April 15, 2019
    Publication date: September 5, 2019
    Inventors: Curtis Davis, Monier Maher, Jean P. Bordes, Manju Hegde, Otto A. Schmid, Raghunath K. Rao, Marius Goldenberg, Aria Eshraghi, Vito Giannini, David S. Trager, Nikhilesh Bhagat, Srikanth Gollapudi, Sundar Govindarajan, Steve Borho, Jonathan Preussner, Paul W. Dent, Paul Bassett, Stephen W. Alland, Fred Harris, Wayne E. Stark, Murtaza Ali
  • Patent number: 10324165
    Abstract: A radar sensing system for a vehicle includes a transmitter, a receiver, and a processor. The transmitter is configured to transmit a radio signal. The receiver is configured to receive a radio signal which includes the transmitted radio signal reflected from an object in the environment. The receiver is also configured to receive an interfering radio signal transmitted by a transmitter of another radar sensing system. The processor is configured to control the transmitter to mitigate or avoid interference from the other radar sensing system.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: June 18, 2019
    Assignee: Uhnder, Inc.
    Inventors: Jean P. Bordes, Curtis Davis, Wayne E. Stark, Otto A. Schmid, Raghunath K. Rao
  • Patent number: 10261179
    Abstract: A radar system has different modes of operation. In one mode, the radar operates as a single-input, multiple output (SIMO) radar system utilizing one transmitted signal from one antenna at a time. Codes with known excellent autocorrelation properties are utilized in this mode. At each receiver the response after correlating with various possible transmitted signals is measured in order to estimate the interference that each transmitter will represent at each receiver. The estimated effect of the interference from one transmitter to a receiver that correlates with a different code is used to mitigate the interference. In another mode, the radar operates as a multi-input, multiple-output (MIMO) radar system utilizing all the antennas at a time. Interference cancellation of the nonideal cross-correlation sidelobes when transmitting in the MIMO mode are employed to remove ghost targets due to unwanted sidelobes.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: April 16, 2019
    Assignee: Uhnder, Inc.
    Inventors: Curtis Davis, Monier Maher, Jean P. Bordes, Manju Hegde, Otto A. Schmid, Raghunath K. Rao, Marius Goldenberg, Aria Eshraghi, Vito Giannini, David S. Trager, Nikhilesh Bhagat, Srikanth Gollapudi, Sundar Govindarajan, Steve Borho, Jonathan Preussner, Paul W. Dent, Paul Bassett, Stephen W. Alland, Fred Harris, Wayne E. Stark, Murtaza Ali
  • Publication number: 20190094353
    Abstract: A radar system processes signals in a flexible, adaptive manner to determine range, Doppler (velocity) and angle of objects in an environment. The radar system processes the received signal to achieve different objectives depending on one or more of a selected range resolution, a selected velocity resolution, and a selected angle of arrival resolution, as defined by memory requirements and processing requirements. The system allows improved resolution of range, Doppler and/or angle depending on the memory requirements and processing requirements. The system also adapts to changing environmental conditions including interfering radio signals.
    Type: Application
    Filed: December 3, 2018
    Publication date: March 28, 2019
    Inventors: Curtis Davis, Monier Maher, Jean P. Bordes, Manju Hegde, Otto A. Schmid, Raghunath K. Rao, Marius Goldenberg, Aria Eshraghi, Vito Giannini, David S. Trager, Nikhilesh Bhagat, Srikanth Gollapudi, Sundar Govindarajan, Steve Borho, Jonathan Preussner, Paul W. Dent, Paul Bassett, Stephen W. Alland, Fred Harris, Wayne E. Stark, Murtaza Ali
  • Patent number: 10215853
    Abstract: A radar sensing system for a vehicle includes a transmit pipeline, a receive pipeline, and a memory module. The transmit pipeline includes transmitters for transmitting radio signals. The receive pipeline includes receivers for receiving radio signals that include the transmitted radio signals transmitted by the transmitters and reflected from objects in an environment. The memory module is configured to store interference estimates for each receiver of the plurality of receivers that are estimates of interfering radio signals received by each of the receivers that are transmitted by each respective transmitter of the plurality of transmitters. Each receiver of the plurality of receivers is configured to mitigate interference that is due to interfering radio signals transmitted by the plurality of transmitters, as defined by the stored interference estimates of the plurality of transmitters for each particular receiver.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: February 26, 2019
    Assignee: Uhnder, Inc.
    Inventors: Wayne E. Stark, Jean P. Bordes, Curtis Davis, Raghunath K. Rao, Monier Maher, Manju Hegde, Otto A. Schmid
  • Patent number: 10145954
    Abstract: A radar system processes signals in a flexible, adaptive manner to determine range, Doppler (velocity) and angle of objects in an environment. The radar system processes the received signal to achieve different objectives depending on one or more of a selected range resolution, a selected velocity resolution, and a selected angle of arrival resolution, as defined by memory requirements and processing requirements. The system allows improved resolution of range, Doppler and/or angle depending on the memory requirements and processing requirements.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: December 4, 2018
    Assignee: Uhnder, Inc.
    Inventors: Curtis Davis, Monier Maher, Jean P. Bordes, Manju Hegde, Otto A. Schmid, Raghunath K. Rao, Marius Goldenberg, Aria Eshraghi, Vito Giannini, David S. Trager, Nikhilesh Bhagat, Srikanth Gollapudi, Sundar Govindarajan, Steve Borho, Jonathan Preussner, Paul W. Dent, Paul Bassett, Stephen W. Alland, Fred Harris, Wayne E. Stark, Murtaza Ali
  • Publication number: 20180252809
    Abstract: A radar system has different modes of operation. In one mode, the radar operates as a single-input, multiple output (SIMO) radar system utilizing one transmitted signal from one antenna at a time. Codes with known excellent autocorrelation properties are utilized in this mode. At each receiver the response after correlating with various possible transmitted signals is measured in order to estimate the interference that each transmitter will represent at each receiver. The estimated effect of the interference from one transmitter to a receiver that correlates with a different code is used to mitigate the interference. In another mode, the radar operates as a multi-input, multiple-output (MIMO) radar system utilizing all the antennas at a time. Interference cancellation of the nonideal cross-correlation sidelobes when transmitting in the MIMO mode are employed to remove ghost targets due to unwanted sidelobes.
    Type: Application
    Filed: April 25, 2017
    Publication date: September 6, 2018
    Inventors: Curtis Davis, Monier Maher, Jean P. Bordes, Manju Hegde, Otto A. Schmid, Raghunath K. Rao, Marius Goldenberg, Aria Eshraghi, Vito Giannini, David S. Trager, Nikhilesh Bhagat, Srikanth Gollapudi, Sundar Govindarajan, Steve Borho, Jonathan Preussner, Paul W. Dent, Paul Bassett, Stephen W. Alland, Fred Harris, Wayne E. Stark, Murtaza Ali
  • Publication number: 20180241822
    Abstract: A shared radar and communication system for a vehicle includes capabilities for radar detection and communication with vehicles equipped with similar systems. A transmitter transmits a modulated radio signal that is modulated based upon at least one of a first spreading code and a second spreading code. The second spreading code is defined by a first plurality of information bits. A receiver receives radio signals that include the transmitted radio signals transmitted by the transmitter and reflected from objects in an environment. A control unit is configured to select the first plurality of information bits. The selection of the information bits encodes selected information for transmission via the transmitted modulated radio signal to be received by another radar sensing system.
    Type: Application
    Filed: April 23, 2018
    Publication date: August 23, 2018
    Inventors: Curtis Davis, Manju Hegde, Wayne E. Stark, Aria Eshraghi, Marius Goldenberg, Murtaza Ali
  • Publication number: 20180231656
    Abstract: A radar sensing system for a vehicle has multiple transmitters and receivers on a vehicle. The transmitters are configured to transmit radio signals which are reflected off of objects in the environment. There are one or more receivers that receive the reflected radio signals. Each receiver has an antenna, a radio frequency front end, an analog-to-digital converter (ADC), and a digital signal processor. The transmitted signals are based on spreading codes generated by a programmable code generation unit. The receiver also makes use of the spreading codes generated by the programmable code generation unit. The programmable code generation unit is configured to selectively generate particular spreading codes that have desired properties.
    Type: Application
    Filed: February 9, 2018
    Publication date: August 16, 2018
    Inventors: Monier Maher, Jean Pierre Bordes, Wayne E. Stark, Raghunath Krishna Rao, Frederick Rush, Curtis Davis, Srikanth Gollapudi, Steve Borho, Murtaza Ali
  • Publication number: 20180231655
    Abstract: A radar sensing system for a vehicle includes a transmit pipeline, a receive pipeline, and a memory module. The transmit pipeline includes transmitters for transmitting radio signals. The receive pipeline includes receivers for receiving radio signals that include the transmitted radio signals transmitted by the transmitters and reflected from objects in an environment. The memory module is configured to store interference estimates for each receiver of the plurality of receivers that are estimates of interfering radio signals received by each of the receivers that are transmitted by each respective transmitter of the plurality of transmitters. Each receiver of the plurality of receivers is configured to mitigate interference that is due to interfering radio signals transmitted by the plurality of transmitters, as defined by the stored interference estimates of the plurality of transmitters for each particular receiver.
    Type: Application
    Filed: April 16, 2018
    Publication date: August 16, 2018
    Inventors: Wayne E. Stark, Jean P. Bordes, Curtis Davis, Raghunath K. Rao, Monier Maher, Manju Hegde, Otto A. Schmid
  • Patent number: 9954955
    Abstract: A shared radar and communication system for a vehicle includes capabilities for radar detection and communication with vehicles equipped with similar systems. The radar system is equipped with pluralities of transmit antennas and pluralities of receive antennas. The radar transmits a signal modulated with spread codes that are information bits. A receiver discriminates the signals sent from own transmitters and multiple reflections to detect objects of interest. In addition, the receiver discriminates signals transmitted from different systems on other vehicles. This requires the receiving system to have knowledge of the codes transmitted by the other vehicle. The receiving system determines the information bits sent by the other vehicle. If multiple radar systems on multiple vehicles use different sets of codes (but known to each other), the multiple systems can create a communication infra-structure in addition to radar detection and imaging.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: April 24, 2018
    Assignee: Uhnder, Inc.
    Inventors: Curtis Davis, Manju Hegde, Wayne E. Stark, Aria Eshraghi, Marius Goldenberg, Murtaza Ali
  • Patent number: 9945943
    Abstract: A radar system has different modes of operation. In one mode the radar operates as a single-input, multiple-output (SIMO) radar system utilizing one transmitted signal from one antenna at a time. Codes with known excellent autocorrelation properties are utilized in this mode. At each receiver the response after correlating with various possible transmitted signals is measured in order to estimate the interference that each transmitter will represent at each receiver. The estimated effect of the interference from one transmitter on a receiver that correlates with a different code is used to mitigate the interference. In another mode, the radar operates as a MIMO radar system utilizing all the antennas at a time. Interference cancellation of the non-ideal cross correlation sidelobes when transmitting in the MIMO mode are employed to remove ghost targets due to unwanted sidelobes.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: April 17, 2018
    Assignee: Uhnder, Inc.
    Inventors: Wayne E. Stark, Jean P. Bordes, Curtis Davis, Raghunath K. Rao, Monier Maher, Manju Hegde, Otto A. Schmid
  • Publication number: 20180100918
    Abstract: A radar system processes signals in a flexible, adaptive manner to determine range, Doppler (velocity) and angle of objects in an environment. The radar system processes the received signal to achieve different objectives depending on one or more of a selected range resolution, a selected velocity resolution, and a selected angle of arrival resolution, as defined by memory requirements and processing requirements. The system allows improved resolution of range, Doppler and/or angle depending on the memory requirements and processing requirements.
    Type: Application
    Filed: December 18, 2017
    Publication date: April 12, 2018
    Inventors: Curtis Davis, Monier Maher, Jean P. Bordes, Manju Hegde, Otto A. Schmid, Raghunath K. Rao, Marius Goldenberg, Aria Eshraghi, Vito Giannini, David S. Trager, Nikhilesh Bhagat, Srikanth Gollapudi, Sundar Govindarajan, Steve Borho, Jonathan Preussner, Paul W. Dent, Paul Bassett, Stephen W. Alland, Fred Harris, Wayne E. Stark, Murtaza Ali
  • Publication number: 20180031674
    Abstract: A radar sensing system for a vehicle includes a transmitter, a receiver, and a processor. The transmitter is configured to transmit a radio signal. The receiver is configured to receive a radio signal which includes the transmitted radio signal reflected from an object in the environment. The receiver is also configured to receive an interfering radio signal transmitted by a transmitter of another radar sensing system. The processor is configured to control the transmitter to mitigate or avoid interference from the other radar sensing system.
    Type: Application
    Filed: September 22, 2017
    Publication date: February 1, 2018
    Inventors: Jean P. Bordes, Curtis Davis, Wayne E. Stark, Otto A. Schmid, Raghunath K. Rao
  • Patent number: 9846228
    Abstract: A radar system processes signals in a flexible, adaptive manner to determine range, Doppler (velocity) and angle of objects in an environment. The radar system processes the received signal to achieve different objectives depending on the environment, the current information stored in the radar system, and/or external information provided to the radar system. The system allows improved resolution of range, Doppler and/or angle depending on the desired objective.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: December 19, 2017
    Assignee: UHNDER, INC.
    Inventors: Curtis Davis, Monier Maher, Jean P. Bordes, Manju Hegde, Otto A. Schmid, Raghunath K. Rao, Marius Goldenberg, Aria Eshraghi, Vito Giannini, David S. Trager, Nikhilesh Bhagat, Srikanth Gollapudi, Sundar Govindarajan, Steve Borho, Jonathan Preussner, Paul W. Dent, Paul Bassett, Stephen W. Alland, Fred Harris, Wayne E. Stark, Murtaza Ali
  • Publication number: 20170336495
    Abstract: A radar sensing system for a vehicle includes transmit and receive pipelines. The transmit pipeline includes transmitters able to transmit radio signals. The receive pipeline includes receivers able to receive radio signals. The received radio signals include transmitted radio signals that are reflected from an object. The transmitters phase modulate the radio signals before transmission, as defined by a first binary sequence. The receive pipeline comprises at least one analog to digital converter (ADC) for sampling the received radio signals. The first binary sequence is defined by least significant bit (LSB) outputs from the at least one ADC.
    Type: Application
    Filed: July 28, 2017
    Publication date: November 23, 2017
    Inventors: Curtis Davis, Manju Hegde, Wayne E. Stark, John Lovberg
  • Publication number: 20170310758
    Abstract: A shared radar and communication system for a vehicle includes capabilities for radar detection and communication with vehicles equipped with similar systems. The radar system is equipped with pluralities of transmit antennas and pluralities of receive antennas. The radar transmits a signal modulated with spread codes that are information bits. A receiver discriminates the signals sent from own transmitters and multiple reflections to detect objects of interest. In addition, the receiver discriminates signals transmitted from different systems on other vehicles. This requires the receiving system to have knowledge of the codes transmitted by the other vehicle. The receiving system determines the information bits sent by the other vehicle. If multiple radar systems on multiple vehicles use different sets of codes (but known to each other), the multiple systems can create a communication infra-structure in addition to radar detection and imaging.
    Type: Application
    Filed: April 25, 2017
    Publication date: October 26, 2017
    Inventors: Curtis Davis, Manju Hegde, Wayne E. Stark, Aria Eshraghi, Marius Goldenberg, Murtaza Ali
  • Publication number: 20170293027
    Abstract: A radar system has different modes of operation. In one mode the radar operates as a single-input, multiple-output (SIMO) radar system utilizing one transmitted signal from one antenna at a time. Codes with known excellent autocorrelation properties are utilized in this mode. At each receiver the response after correlating with various possible transmitted signals is measured in order to estimate the interference that each transmitter will represent at each receiver. The estimated effect of the interference from one transmitter on a receiver that correlates with a different code is used to mitigate the interference. In another mode, the radar operates as a MIMO radar system utilizing all the antennas at a time. Interference cancellation of the non-ideal cross correlation sidelobes when transmitting in the MIMO mode are employed to remove ghost targets due to unwanted sidelobes.
    Type: Application
    Filed: June 26, 2017
    Publication date: October 12, 2017
    Inventors: Wayne E. Stark, Jean P. Bordes, Curtis Davis, Raghunath K. Rao, Monier Maher, Manju Hegde, Otto A. Schmid
  • Publication number: 20170293025
    Abstract: A radar system processes signals in a flexible, adaptive manner to determine range, Doppler (velocity) and angle of objects in an environment. The radar system processes the received signal to achieve different objectives depending on the environment, the current information stored in the radar system, and/or external information provided to the radar system. The system allows improved resolution of range, Doppler and/or angle depending on the desired objective.
    Type: Application
    Filed: April 25, 2017
    Publication date: October 12, 2017
    Inventors: Curtis Davis, Monier Maher, Jean P. Bordes, Manju Hegde, Otto A. Schmid, Raghunath K. Rao, Marius Goldenberg, Aria Eshraghi, Vito Giannini, David S. Trager, Nikhilesh Bhagat, Srikanth Gollapudi, Sundar Govindarajan, Steve Borho, Jonathan Preussner, Paul W. Dent, Paul Bassett, Stephen W. Alland, Fred Harris, Wayne E. Stark, Murtaza Ali
  • Patent number: 9772397
    Abstract: A radar sensing system for a vehicle includes at least one transmitter, at least one receiver, and a processor. The at least one transmitter is operable to transmit a radio signal at one of a plurality of carrier frequencies. The at least one receiver is operable to receive a radio signal which includes a reflected radio signal that is the transmitted radio signal reflected from an object. The at least one receiver is operable to receive an interfering radio signal transmitted by a transmitter of another radar sensing system. The processor is operable to control the at least one transmitter to selectively transmit radio signals on one of the plurality of carrier frequencies. The processor is further operable to at least one of select a carrier frequency with reduced interference and avoid interference from the other radar sensing system.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: September 26, 2017
    Assignee: UHNDER, INC.
    Inventors: Jean P. Bordes, Curtis Davis, Wayne E. Stark, Otto A. Schmid, Raghunath K. Rao