Patents by Inventor Wayne M. Kachmar

Wayne M. Kachmar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8805151
    Abstract: A lashing assembly lashes together two or more fiber optic telecommunications cables. The lashing assembly comprises at least a first and a second bobbin. As the cables are passed through the first bobbin, twine pays off from the first bobbin and wraps around the cables in a clockwise helix. As the cables are passed through the second bobbin, twine pays off from the second bobbin and wraps around the cables in a counterclockwise helix. In this way, the twine from the first and second bobbins lash the cables together as the cables are passed through the first and second bobbins.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: August 12, 2014
    Assignee: ADC Telecommunications, Inc.
    Inventors: Wayne M. Kachmar, Ronald J. Kleckowski, Trevor D. Smith
  • Patent number: 8798416
    Abstract: The present disclosure relates to a telecommunications cable having a layer constructed to resist post-extrusion shrinkage. The layer includes a plurality of discrete shrinkage-reduction members embedded within a base material. The shrinkage-reduction members can be made of a liquid crystal polymer. The disclosure also relates to a method for manufacturing telecommunications cables having layers adapted to resist post-extrusion shrinkage.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: August 5, 2014
    Assignee: ADC Telecommunications, Inc.
    Inventor: Wayne M. Kachmar
  • Publication number: 20140205240
    Abstract: A hybrid fiber/copper connector assembly which permits repair of damaged fibers or copper conductors carried by a hybrid fiber/copper cable without requiring replacement of the entire connector assembly or the cable is disclosed. The hybrid fiber/copper connector assembly disclosed also allows individual hybrid fiber/copper connectors of the assembly to be converted from one gender to a different gender. The hybrid fiber/copper connectors of the assembly include removable keying members mountable to housings of the connectors. The removable keying members allow gender conversion and proper mating and orientation. The hybrid fiber/copper connector assembly also allows the individual connectors of the assembly to be converted from being hybrid fiber/copper connectors to being only fiber connectors or only copper connectors.
    Type: Application
    Filed: March 21, 2014
    Publication date: July 24, 2014
    Applicant: ADC TELECOMMUNICATIONS, INC.
    Inventors: Jarrod Scadden, M'hamed Anis Khemakhem, Jeffrey Louis Peters, Wayne M. Kachmar
  • Publication number: 20140199079
    Abstract: The present disclosure relates to a fiber optic network configuration having an optical network terminal located at a subscriber location. The fiber optic network configuration also includes a drop terminal located outside the subscriber location and a wireless transceiver located outside the subscriber location. The fiber optic network further includes a cabling arrangement including a first signal line that extends from the drop terminal to the optical network terminal, a second signal line that extends from the optical network terminal to the wireless transceiver, and a power line that extends from the optical network terminal to the wireless transceiver.
    Type: Application
    Filed: August 13, 2013
    Publication date: July 17, 2014
    Inventors: Trevor D. Smith, Yu Lu, Wayne M. Kachmar
  • Patent number: 8781281
    Abstract: A fiber optic cable includes an outer jacket, an optical fiber ribbon, and reinforcing member configurations. The outer jacket has an elongated transverse cross-sectional profile that defines a major axis and a minor axis that meet at a lengthwise axis of the fiber optic cable. The outer jacket defines a central fiber passage that extends through the outer jacket along a lengthwise axis of the outer jacket. The optical fiber ribbon is positioned within the central fiber passage. The reinforcing member configurations are positioned within the outer jacket on opposite sides of the central fiber passage. Each of the reinforcing member configurations has a transverse cross-sectional profile that includes first and second legs that are angled relative to one another such that they diverge as the first and second legs extend toward the minor axis.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: July 15, 2014
    Assignee: ADC Telecommunications, Inc.
    Inventor: Wayne M. Kachmar
  • Publication number: 20140153890
    Abstract: A molding system includes a flexible cable carrier body that defines a sealing opening that provides access to an interior channel. A continuous length of the flexible cable carrier body is wrapped about a spool for storage and for ease of dispensing at a work site. The continuous length of the cable carrier body is cut to desired custom lengths during installation at the work site. An insertion tool having a plow and feeder channel can facilitate payoff of the fiber/cable into the cable carrier body.
    Type: Application
    Filed: October 18, 2013
    Publication date: June 5, 2014
    Applicant: ADC Telecommunications, Inc.
    Inventors: Derek Sayres, Thomas Marcouiller, Thomas G. LeBlanc, Wayne M. Kachmar, Ronald J. Kleckowski
  • Patent number: 8678666
    Abstract: A hybrid fiber/copper connector assembly which permits repair of damaged fibers or copper conductors carried by a hybrid fiber/copper cable without requiring replacement of the entire connector assembly or the cable is disclosed. The hybrid fiber/copper connector assembly disclosed also allows individual hybrid fiber/copper connectors of the assembly to be converted from one gender to a different gender. The hybrid fiber/copper connectors of the assembly include removable keying members mountable to housings of the connectors. The removable keying members allow gender conversion and proper mating and orientation. The hybrid fiber/copper connector assembly also allows the individual connectors of the assembly to be converted from being hybrid fiber/copper connectors to being only fiber connectors or only copper connectors.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: March 25, 2014
    Assignee: ADC Telecommunications, Inc.
    Inventors: Jarrod Scadden, M'hamed Anis Khemakhem, Jeffrey Louis Peters, Wayne M. Kachmar
  • Publication number: 20140064669
    Abstract: An optical fiber cable includes an optical fiber; a sheet of reinforcing tape rolled around a majority of an annular sidewall of the optical fiber; and a jacket surrounding the rolled sheet of reinforcing tape. The sheet has parallel longitudinal edges that are circumferentially spaced from each other to form a longitudinal slit along a length of the sheet of reinforcing tape. The reinforcing tape is formed of a polymeric material having uni-directionally oriented molecules along the length of the sheet. The jacket is heat-bonded to the sheet of reinforcing tape.
    Type: Application
    Filed: August 23, 2013
    Publication date: March 6, 2014
    Applicant: ADC Telecommunications, Inc.
    Inventor: Wayne M. Kachmar
  • Publication number: 20140050444
    Abstract: A fiber optic connector assembly includes a connector and a carrier. The connector has a first mating end and a second end and a first optical fiber terminated thereto. The fiber defines a first end adjacent the mating end and a second end protruding from the second end of the connector. A polymeric carrier having a connector end and an oppositely disposed cable end is engaged with the connector. The carrier includes a heat activated meltable portion adjacent the cable end. An alignment structure is disposed on the carrier that includes a first end, a second end, and a throughhole. The first end of the alignment structure is for receiving the second end of the first optical fiber and the second end of the alignment structure is for receiving an end of a second optical fiber entering the cable end of the carrier.
    Type: Application
    Filed: October 24, 2013
    Publication date: February 20, 2014
    Applicant: ADC Telecommunications, Inc.
    Inventors: Kenneth Allen Skluzacek, Wagner da Silva Aguiar, Jarrod Scadden, Wayne M. Kachmar
  • Publication number: 20140016904
    Abstract: A fiber optic cable includes an optical fiber, a strength layer surrounding the optical fiber, and an outer jacket surrounding the strength layer. The strength layer includes a matrix material in which is integrated a plurality of reinforcing fibers. A fiber optic cable includes an optical fiber, a strength layer, a first electrical conductor affixed to an outer surface of the strength layer, a second electrical conductor affixed to the outer surface of the strength layer, and an outer jacket. The strength layer includes a polymeric material in which is embedded a plurality of reinforcing fibers. A method of manufacturing a fiber optic cable includes mixing a base material in an extruder. A strength layer is formed about an optical fiber. The strength layer includes a polymeric film with embedded reinforcing fibers disposed in the film. The base material is extruded through an extrusion die to form an outer jacket.
    Type: Application
    Filed: September 17, 2013
    Publication date: January 16, 2014
    Applicant: ADC Telecommunications, Inc.
    Inventor: Wayne M. Kachmar
  • Patent number: 8625946
    Abstract: An optical fiber assembly includes a core. The core includes a central portion and a plurality of fins that extends radially outward from the central portion. The central portion defines a central passage. The central portion and the plurality of fins cooperatively define a plurality of grooves that is helically oriented along a length of the core. A plurality of optical fibers is disposed in the plurality of grooves. A strength member is disposed in the central passage of the core. An outer covering surrounds the core. The outer covering is air permeable.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: January 7, 2014
    Assignee: ADC Telecommunications, Inc.
    Inventor: Wayne M. Kachmar
  • Patent number: 8573858
    Abstract: An assembly includes a connector and a carrier engaged therewith. Connector has a first mating end and a second end and a first fiber. The fiber defines a first end adjacent the mating end and a second end protruding from the connector second end. Carrier has a connector end and an opposite cable end and includes a heat activated meltable portion adjacent the cable end. An alignment structure is on the carrier and includes first and second ends, and a throughhole. The first end of the alignment structure receives the second end of the first fiber and the second end receives an end of a second fiber entering the carrier. The heat activated portion melts and assumes a flowable condition when exposed to a predetermined amount of heat and resolidifies when heat is removed, bonding the second fiber to the carrier after the first and second fibers are aligned.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: November 5, 2013
    Assignee: ADC Telecommunications, Inc.
    Inventors: Kenneth Allen Skluzacek, Wagner Da Silva Aguiar, Jarrod Scadden, Wayne M. Kachmar
  • Patent number: 8548293
    Abstract: A fiber optic cable includes an optical fiber, a strength layer surrounding the optical fiber, and an outer jacket surrounding the strength layer. The strength layer includes a matrix material in which is integrated a plurality of reinforcing fibers. A fiber optic cable includes an optical fiber, a strength layer, a first electrical conductor affixed to an outer surface of the strength layer, a second electrical conductor affixed to the outer surface of the strength layer, and an outer jacket. The strength layer includes a polymeric material in which is embedded a plurality of reinforcing fibers. A method of manufacturing a fiber optic cable includes mixing a base material in an extruder. A strength layer is formed about an optical fiber. The strength layer includes a polymeric film with embedded reinforcing fibers disposed in the film. The base material is extruded through an extrusion die to form an outer jacket.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: October 1, 2013
    Assignee: ADC Telecommunications, Inc.
    Inventor: Wayne M. Kachmar
  • Patent number: 8532490
    Abstract: The present disclosure relates to a fiber optic network configuration having an optical network terminal located at a subscriber location. The fiber optic network configuration also includes a drop terminal located outside the subscriber location and a wireless transceiver located outside the subscriber location. The fiber optic network further includes a cabling arrangement including a first signal line that extends from the drop terminal to the optical network terminal, a second signal line that extends from the optical network terminal to the wireless transceiver, and a power line that extends from the optical network terminal to the wireless transceiver.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: September 10, 2013
    Assignee: ADC Telecommunications, Inc.
    Inventors: Trevor D. Smith, Yu Lu, Wayne M. Kachmar
  • Patent number: 8500341
    Abstract: The present disclosure relates to a drop cable assembly including a fiber optic drop cable having a length that extends from a first end of the fiber optic drop cable to an opposite second end of the fiber optic drop cable. The fiber optic drop cable also includes an intermediate location located between the first and second ends of the fiber optic drop cable. The drop cable assembly also includes a first fiber optic connector mounted at the first end of the fiber optic drop cable and a second fiber optic connector mounted at the second end of the fiber optic drop cable. The drop cable assembly further includes an optical fiber that extends continuously without splicing along the length of the fiber optic drop cable from the first fiber optic connector to the second fiber optic connector.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: August 6, 2013
    Assignee: ADC Telecommunications, Inc.
    Inventors: Steven C. Zimmel, Christopher Stroth, Wayne M. Kachmar, Ronald J. Kleckowski
  • Patent number: 8430572
    Abstract: A fiber optic connector assembly includes a connector and a carrier. The connector has a first mating end and a second end and an optical fiber terminated thereto. The fiber defines a first end adjacent the mating end and a second end protruding out of the second end of the fiber optic connector. A carrier having a connector end and an oppositely disposed cable end is engaged with the connector. An alignment structure is disposed on the carrier that includes a first end and a second end and a throughhole extending therebetween, the alignment structure including a cutaway portion extending perpendicularly to and communicating with the throughhole. The optical fiber terminated to the fiber optic connector is positioned within at least a portion of the throughhole with the second end of the optical fiber located within the cutaway portion.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: April 30, 2013
    Assignee: ADC Telecommunications, Inc.
    Inventors: Jarrod Scadden, Wagner Da Silva Aguiar, Wayne M. Kachmar, Jeff Bearwald, Alan Shores
  • Patent number: 8422843
    Abstract: A multi-fiber cable assembly includes a plurality of optical fibers and at least two fiber grouping members disposed in a reverse double helical configuration about the plurality of optical fibers. An outer jacket surrounds the fiber grouping members and the plurality of optical fibers.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: April 16, 2013
    Assignee: ADC Telecommunications, Inc.
    Inventor: Wayne M. Kachmar
  • Patent number: 8391658
    Abstract: A fiber optic cable assembly includes a fiber optic cable and a connector assembly. The fiber optic cable includes an optical fiber, having a core surrounded by a cladding, and a jacket, which surrounds the optical fiber. The jacket includes a plurality of reinforcement members integrated into a matrix material of the jacket. The connector assembly includes a rear housing having a connector end that is directly engaged with an end portion of the jacket. A fiber optic cable includes an optical fiber with a core surrounded by a cladding. The fiber optic cable also includes a jacket that surrounds the optical fiber. The jacket includes about 40% to about 70% by weight of a plurality of reinforcement members integrated into a matrix material of the jacket.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: March 5, 2013
    Assignee: ADC Telecommunications, Inc.
    Inventor: Wayne M. Kachmar
  • Patent number: 8388242
    Abstract: A fiber optic cable assembly includes a connector and a fiber optic cable. The connector includes a housing having a first axial end and an oppositely disposed second axial end. A ferrule is disposed in the housing. A plurality of optical fibers is mounted in the ferrule. The fiber optic cable includes an outer jacket defining a fiber passage that extends longitudinally through the outer jacket and a window that extends through the outer jacket and the fiber passage. First and second strength members are oppositely disposed about the fiber passage in the outer jacket. A plurality of optical fibers is disposed in the fiber passage. The optical fibers are joined at splices to the optical fibers of the connector. A splice sleeve is disposed over the splices. The splice sleeve is disposed in the window of the outer jacket.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: March 5, 2013
    Assignee: ADC Telecommunications, Inc.
    Inventors: Wayne M. Kachmar, Ronald J. Kleckowski
  • Publication number: 20130032280
    Abstract: The present disclosure relates to a fiber optic cable and a method for manufacturing the cable. The cable includes an outer jacket that defines a fiber passage and first and second reinforcing member passages, an optical fiber ribbon, and reinforcing members. The method includes extruding the jacket, feeding the ribbon into the fiber passage, and feeding the reinforcing members into the reinforcing member passages. The jacket has a width and a thickness. The width is longer than the thickness. The reinforcing member passages are positioned on opposite sides of the fiber passage. The reinforcing members are paid-off from a single spool by paying-off a precursor reinforcing member from the spool. The precursor reinforcing member can be divided (e.g., by using a slitter) into the reinforcing members which are then fed into the reinforcing member passages.
    Type: Application
    Filed: July 23, 2012
    Publication date: February 7, 2013
    Applicant: ADC Telecommunications, Inc.
    Inventor: Wayne M. Kachmar