Patents by Inventor Wayne Sorin

Wayne Sorin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11177624
    Abstract: Examples of the present disclosure include a tunable laser comprising a waveguide including gain section. The waveguide overlies and is optically coupled to another waveguide. The another waveguide has a reflector at one end. A laser cavity is formed in the waveguides.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: November 16, 2021
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Stanley Cheung, Michael Renne Ty Tan, Wayne Sorin, Joaquin Matres Abril, Sagi Mathai
  • Patent number: 10985531
    Abstract: A VCSEL device includes a substrate and a first DBR structure disposed on the substrate. The VCSEL device further includes a cathode contact disposed on a top surface of the first DBR structure. In addition, the VCSEL device includes a VCSEL mesa that is disposed on the top surface of the first DBR structure. The VCSEL mesa includes a quantum well, a non-circularly-shaped oxide aperture region disposed above the quantum well, and a second DBR structure disposed above the non-circularly-shaped oxide aperture region. In addition, the VCSEL mesa includes a selective polarization structure disposed above the second DBR structure and an anode contact disposed above the selective polarization structure.
    Type: Grant
    Filed: January 27, 2019
    Date of Patent: April 20, 2021
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Binhao Wang, Wayne Sorin, Michael Renne Ty Tan, Sagi Varghese Mathai, Stanley Cheung
  • Patent number: 10924185
    Abstract: Systems and methods are provided for a dual-side bi-directional optical multiplexing system includes a light receiving elements array receiving light from in an egress propagation direction from an optical fiber, arranged at a side of the optical fiber. The system also includes a light transmitting elements array emitting light in an ingress propagation direction into the optical fiber, and arranged at a second position to an opposing side of the optical fiber. The light receiving elements array and the light transmitting elements array are on dual-sides of the system with respect to the optical fiber. The system also includes bi-directional micro-optics interfacing with the optical fiber, and interfacing with the light transmitting elements array to direct light propagating in the ingress direction emitted from the light transmitting element array towards the optical fiber.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: February 16, 2021
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Kevin B. Leigh, Michael Renne Ty Tan, Sagi Mathai, Paul Rosenberg, Wayne Sorin
  • Patent number: 10848247
    Abstract: An apparatus includes a first and second VCSEL, each with an integrated lens. The VCSELs emit a first light beam having first optical modes at first wavelengths and a second light beam having second optical modes at second wavelengths. The apparatus also has an optical block with a first and second surface, a mirror coupled to the second surface, and a wavelength-selective filter coupled to the first surface. The first integrated lens mode matches the first beam to the optical block, and the second integrated lens mode matches the second beam to the optical block such that the first beam and second beam each have substantially a beam waist with a beam waist dimension at the first and second input region, respectively. An exit beam that includes light from the first beam and the second beam is output from the second surface of the optical block.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: November 24, 2020
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Wayne Sorin, Michael Renne Ty Tan, Sagi V. Mathai, Georgios Panotopoulos, Paul K. Rosenberg
  • Patent number: 10820071
    Abstract: In the examples provided herein, a system has a plurality of arrayed waveguide gratings (AWG) having a plurality of input ports and a plurality of output ports. A signal within a given wavelength channel transmitted to one of the input ports of a given AWG is routed to one of the output ports of the given AWG based on a signal wavelength. The system also has a plurality of nodes, with each node comprising a set of components for each AWG that the node is coupled to. Each set of components comprises a plurality of optical transmitters, where each optical transmitter is tunable over multiple wavelength channels within a different wavelength band; a band multiplexer to multiplex the multiple wavelength channels within each different wavelength band; and a first output fiber to couple an output of the band multiplexer to one of the input ports of a first AWG.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: October 27, 2020
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Wayne Sorin, Joaquin Matres, Michael Tan
  • Publication number: 20200244040
    Abstract: A VCSEL device includes a substrate and a first DBR structure disposed on the substrate. The VCSEL device further includes a cathode contact disposed on a top surface of the first DBR structure. In addition, the VCSEL device includes a VCSEL mesa that is disposed on the top surface of the first DBR structure. The VCSEL mesa includes a quantum well, a non-circularly-shaped oxide aperture region disposed above the quantum well, and a second DBR structure disposed above the non-circularly-shaped oxide aperture region. In addition, the VCSEL mesa includes a selective polarization structure disposed above the second DBR structure and an anode contact disposed above the selective polarization structure.
    Type: Application
    Filed: January 27, 2019
    Publication date: July 30, 2020
    Inventors: Binhao Wang, Wayne Sorin, Michael Renne Ty Tan, Sagi Varghese Mathai, Stanley Cheung
  • Publication number: 20200203918
    Abstract: Examples of the present disclosure include a tunable laser comprising a waveguide including gain section. The waveguide overlies and is optically coupled to another waveguide. The another waveguide has a reflector at one end. A laser cavity is formed in the waveguides.
    Type: Application
    Filed: September 30, 2019
    Publication date: June 25, 2020
    Inventors: Stanley Cheung, Michael Renne Ty Tan, Wayne Sorin, Joaquin Matres Abril, Sagi Mathai
  • Publication number: 20200100002
    Abstract: In the examples provided herein, a system has a plurality of arrayed waveguide gratings (AWG) having a plurality of input ports and a plurality of output ports. A signal within a given wavelength channel transmitted to one of the input ports of a given AWG is routed to one of the output ports of the given AWG based on a signal wavelength. The system also has a plurality of nodes, with each node comprising a set of components for each AWG that the node is coupled to. Each set of components comprises a plurality of optical transmitters, where each optical transmitter is tunable over multiple wavelength channels within a different wavelength band; a band multiplexer to multiplex the multiple wavelength channels within each different wavelength band; and a first output fiber to couple an output of the band multiplexer to one of the input ports of a first AWG.
    Type: Application
    Filed: November 26, 2019
    Publication date: March 26, 2020
    Inventors: Wayne Sorin, Joaquin Matres, Michael Tan
  • Publication number: 20200044738
    Abstract: Systems and methods are provided for a dual-side bi-directional optical multiplexing system includes a light receiving elements array receiving light from in an egress propagation direction from an optical fiber, arranged at a side of the optical fiber. The system also includes a light transmitting elements array emitting light in an ingress propagation direction into the optical fiber, and arranged at a second position to an opposing side of the optical fiber. The light receiving elements array and the light transmitting elements array are on dual-sides of the system with respect to the optical fiber. The system also includes bi-directional micro-optics interfacing with the optical fiber, and interfacing with the light transmitting elements array to direct light propagating in the ingress direction emitted from the light transmitting element array towards the optical fiber.
    Type: Application
    Filed: August 6, 2018
    Publication date: February 6, 2020
    Inventors: Kevin B. Leigh, Michael Renne Ty Tan, Sagi Mathai, Paul Rosenberg, Wayne Sorin
  • Patent number: 10505659
    Abstract: In the examples provided herein, a system has a plurality of arrayed waveguide gratings (AWG) having a plurality of input ports and a plurality of output ports. A signal within a given wavelength channel transmitted to one of the input ports of a given AWG is routed to one of the output ports of the given AWG based on a signal wavelength. The system also has a plurality of nodes, with each node comprising a set of components for each AWG that the node is coupled to. Each set of components comprises a plurality of optical transmitters, where each optical transmitter is tunable over multiple wavelength channels within a different wavelength band; a band multiplexer to multiplex the multiple wavelength channels within each different wavelength band; and a first output fiber to couple an output of the band multiplexer to one of the input ports of a first AWG.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: December 10, 2019
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Wayne Sorin, Joaquin Matres, Michael Tan
  • Publication number: 20190190640
    Abstract: In the examples provided herein, a system has a plurality of arrayed waveguide gratings (AWG) having a plurality of input ports and a plurality of output ports. A signal within a given wavelength channel transmitted to one of the input ports of a given AWG is routed to one of the output ports of the given AWG based on a signal wavelength. The system also has a plurality of nodes, with each node comprising a set of components for each AWG that the node is coupled to. Each set of components comprises a plurality of optical transmitters, where each optical transmitter is tunable over multiple wavelength channels within a different wavelength band; a band multiplexer to multiplex the multiple wavelength channels within each different wavelength band; and a first output fiber to couple an output of the band multiplexer to one of the input ports of a first AWG.
    Type: Application
    Filed: August 13, 2015
    Publication date: June 20, 2019
    Inventors: Wayne SORIN, Joaquin MATRES, Michael TAN
  • Publication number: 20190173585
    Abstract: An apparatus includes a first and second VCSEL, each with an integrated lens. The VCSELs emit a first light beam having first optical modes at first wavelengths and a second light beam having second optical modes at second wavelengths. The apparatus also has an optical block with a first and second surface, a mirror coupled to the second surface, and a wavelength-selective filter coupled to the first surface. The first integrated lens mode matches the first beam to the optical block, and the second integrated lens mode matches the second beam to the optical block such that the first beam and second beam each have substantially a beam waist with a beam waist dimension at the first and second input region, respectively. An exit beam that includes light from the first beam and the second beam is output from the second surface of the optical block.
    Type: Application
    Filed: January 29, 2019
    Publication date: June 6, 2019
    Inventors: Wayne Sorin, Michael Renne Ty Tan, Sagi V. Mathai, Georgios Panotopoulos, Paul K. Rosenberg
  • Patent number: 10243661
    Abstract: An apparatus includes a first and second VCSEL, each with an integrated lens. The VCSELs emit a first light beam having first optical modes at first wavelengths and a second light beam having second optical modes at second wavelengths. The apparatus also has an optical block with a first and second surface, a mirror coupled to the second surface, and a wavelength-selective filter coupled to the first surface. The first integrated lens mode matches the first beam to the optical block, and the second integrated lens mode matches the second beam to the optical block such that the first beam and second beam each have substantially a beam waist with a beam waist dimension at the first and second input region, respectively. An exit beam that includes light from the first beam and the second beam is output from the second surface of the optical block.
    Type: Grant
    Filed: August 15, 2014
    Date of Patent: March 26, 2019
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Wayne Sorin, Michael Renne Ty Tan, Sagi V Mathai, Georgios Panotopoulos, Paul K Rosenberg
  • Patent number: 10084285
    Abstract: An example system may include a first vertical cavity surface emitting laser (VCSEL) that includes a first integrated polarization locking structure to produce a polarized optical data signal. The system may also comprise a second VCSEL that includes a second integrated polarization locking structure, the second integrated polarization locking structure orthogonal to the first integrated polarization locking structure, to produce an orthogonally polarized optical data signal. Lenses may be disposed on the substrate opposite the first VCSEL, to collimate the polarized optical data signal, and opposite the second VCSEL to collimate the orthogonally polarized optical data signal. A polarization division multiplexer may combine the first collimated polarized optical data signal and the second collimated orthogonally polarized optical data signal.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: September 25, 2018
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Binhao Wang, Wayne Sorin, Michael Tan, Sagi Mathai, Stanley Cheung
  • Publication number: 20170230116
    Abstract: An apparatus includes a first and second VCSEL, each with an integrated lens. The VCSELs emit a first light beam having first optical modes at first wavelengths and a second light beam having second optical modes at second wavelengths. The apparatus also has an optical block with a first and second surface, a mirror coupled to the second surface, and a wavelength-selective filter coupled to the first surface. The first integrated lens mode matches the first beam to the optical block, and the second integrated lens mode matches the second beam to the optical block such that the first beam and second beam each have substantially a beam waist with a beam waist dimension at the first and second input region, respectively. An exit beam that includes light from the first beam and the second beam is output from the second surface of the optical block.
    Type: Application
    Filed: August 15, 2014
    Publication date: August 10, 2017
    Inventors: Wayne SORIN, Michael Renne Ty TAN, Sagi V MATHAI, Sr., Georgios PANOTOPOULOS, Paul K ROSENBERG
  • Patent number: 9052463
    Abstract: A computer system has an optical data distributing device for transmitting and distributing optical signals. A laser source generates light for forming the optical signals, and an optical fiber with a graded index of refraction couples the light from the laser source to the optical data distributing device. A lens is disposed to image light generated by the laser source into an input end of the optical fiber. The magnification of the lens is selected as a function of a ratio of a numerical aperture and diameter of the laser source divided by a ratio of a numerical aperture and diameter of the optical fiber.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: June 9, 2015
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Wayne Sorin, Sagi Mathai, Michael Tan
  • Patent number: 8469607
    Abstract: Methods and apparatus are provided related to opto-electronics. An opto-electronic subassembly includes electrical contacts bonded to a base by way of a compliant adhesive. The opto-electronic subassembly is mechanically engaged to a circuit board resulting in contact force loading of the compliant adhesive. Such loading maintains electrical coupling between the electrical contacts and respective circuit pathways of the circuit board. Optical signal communication between the opto-electronic subassembly and another entity is performed by way of an optical connector.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: June 25, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Paul Rosenberg, Michael Renne Ty Tan, Sagi Mathai, Wayne Sorin
  • Publication number: 20130089289
    Abstract: A computer system has an optical data distributing device for transmitting and distributing optical signals. A laser source generates light for forming the optical signals, and an optical fiber with a graded index of refraction couples the light from the laser source to the optical data distributing device. A lens is disposed to image light generated by the laser source into an input end of the optical fiber. The magnification of the lens is selected as a function of a ratio of a numerical aperture and diameter of the laser source divided by a ratio of a numerical aperture and diameter of the optical fiber.
    Type: Application
    Filed: June 22, 2010
    Publication date: April 11, 2013
    Inventors: Wayne Sorin, Sagi Mathai, Michael Tan
  • Publication number: 20120288241
    Abstract: Methods and apparatus are provided related to opto-electronics. An opto-electronic subassembly includes electrical contacts bonded to a base by way of a compliant adhesive. The opto-electronic subassembly is mechanically engaged to a circuit board resulting in contact force loading of the compliant adhesive. Such loading maintains electrical coupling between the electrical contacts and respective circuit pathways of the circuit board. Optical signal communication between the opto-electronic subassembly and another entity is performed by way of an optical connector.
    Type: Application
    Filed: May 9, 2011
    Publication date: November 15, 2012
    Inventors: Paul Rosenberg, Michael Renne Ty Tan, Sagi Mathai, Wayne Sorin
  • Publication number: 20070165688
    Abstract: Various methods, systems, and apparatuses are described in which a light source (101) capable of lasing is wavelength locked by an injected light signal. The light source (101) capable of lasing, such as a Fabry-Perot laser diode, may have antireflective coating on one or more facets of the light source (101) capable of lasing. The light source (101) capable of lasing receives a spectral slice of a light signal from a broadband light source (113) to wavelength lock the output wavelength of the light source (101) capable of lasing within the bandwidth of the injected light signal. A current pump (141) may bias the light source (101) capable of lasing to operate as a reflective regenerate semiconductor optical amplifier so that the injected light is reflected back out a front facet after being amplified and wavelength locked.
    Type: Application
    Filed: May 29, 2003
    Publication date: July 19, 2007
    Inventors: Chang-Hee Lee, Wayne Sorin