Patents by Inventor Wayne Szeto

Wayne Szeto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220325303
    Abstract: Provided herein are methods of integrating one or more exogenous nucleic acids into one or more selected target sites of a host cell genome. In certain embodiments, the methods comprise contacting the host cell genome with one or more integration polynucleotides comprising an exogenous nucleic acid to be integrated into a genomic target site, a nuclease capable of causing a break at the genomic target site, and a linear nucleic acid capable of homologous recombination with itself or with one or more additional linear nucleic acids contacted with the population of cells, whereupon said homologous recombination results in formation of a circular extrachromosomal nucleic acid comprising a coding sequence for a selectable marker. In some embodiments, the methods further comprise selecting a host cell that expresses the selectable marker.
    Type: Application
    Filed: June 14, 2022
    Publication date: October 13, 2022
    Inventors: Andrew HORWITZ, Kristy Michelle HAWKINS, Max SCHUBERT, Wayne SZETO
  • Patent number: 11390888
    Abstract: Provided herein are methods of integrating one or more exogenous nucleic acids into one or more selected target sites of a host cell genome. in certain embodiments, the methods comprise contacting the host cell genome with one or more integration polynucleotides comprising an exogenous nucleic acid to be integrated into a genomic target site, a nuclease capable of causing a break at the genomic target site, and a linear nucleic acid capable of homologous recombination with itself or with one or more additional linear nucleic acids contacted with the population of cells, whereupon said homologous recombination results in formation of a circular extrachromosomal nucleic acid comprising a coding sequence for a selectable marker. in some embodiments, the methods further comprise selecting a host cell that expresses the selectable marker.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: July 19, 2022
    Assignee: AMYRIS, INC.
    Inventors: Andrew Horwitz, Kristy Michelle Hawkins, Max Schubert, Wayne Szeto
  • Publication number: 20200354746
    Abstract: Provided herein are methods of integrating one or more exogenous nucleic acids into one or more selected target sites of a host cell genome. in certain embodiments, the methods comprise contacting the host cell genome with one or more integration polynucleotides comprising an exogenous nucleic acid to be integrated into a genomic target site, a nuclease capable of causing a break at the genomic target site, and a linear nucleic acid capable of homologous recombination with itself or with one or more additional linear nucleic acids contacted with the population of cells, whereupon said homologous recombination results in formation of a circular extrachromosomal nucleic acid comprising a coding sequence for a selectable marker. in some embodiments, the methods further comprise selecting a host cell that expresses the selectable marker.
    Type: Application
    Filed: March 11, 2020
    Publication date: November 12, 2020
    Applicant: Amyris, Inc.
    Inventors: Andrew HORWITZ, Kristy Michelle HAWKINS, Max SCHUBERT, Wayne SZETO
  • Patent number: 10626418
    Abstract: Provided herein are methods of integrating one or more exogenous nucleic acids into one or more selected target sites of a host cell genome. In certain embodiments, the methods comprise contacting the host cell genome with one or more integration polynucleotides comprising an exogenous nucleic acid to be integrated into a genomic target site, a nuclease capable of causing a break at the genomic target site, and a linear nucleic acid capable of homologous recombination with itself or with one or more additional linear nucleic acids contacted with the population of cells, whereupon said homologous recombination results in formation of a circular extrachromosomal nucleic acid comprising a coding sequence for a selectable marker. In some embodiments, the methods further comprise selecting a host cell that expresses the selectable marker.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: April 21, 2020
    Assignee: AMYRIS, INC.
    Inventors: Andrew Horwitz, Kristy Michelle Hawkins, Max Schubert, Wayne Szeto
  • Publication number: 20190017074
    Abstract: Provided herein are methods of integrating one or more exogenous nucleic acids into one or more selected target sites of a host cell genome. In certain embodiments, the methods comprise contacting the host cell genome with one or more integration polynucleotides comprising an exogenous nucleic acid to be integrated into a genomic target site, a nuclease capable of causing a break at the genomic target site, and a linear nucleic acid capable of homologous recombination with itself or with one or more additional linear nucleic acids contacted with the population of cells, whereupon said homologous recombination results in formation of a circular extrachromosomal nucleic acid comprising a coding sequence for a selectable marker. In some embodiments, the methods further comprise selecting a host cell that expresses the selectable marker.
    Type: Application
    Filed: July 24, 2018
    Publication date: January 17, 2019
    Applicant: Amyris, Inc.
    Inventors: Andrew Horwitz, Kristy Michelle Hawkins, Max Schubert, Wayne Szeto
  • Patent number: 10041092
    Abstract: Provided herein are methods of integrating one or more exogenous nucleic acids into one or more selected target sites of a host cell genome. In certain embodiments, the methods comprise contacting the host cell genome with one or more integration polynucleotides comprising an exogenous nucleic acid to be integrated into a genomic target site, a nuclease capable of causing a break at the genomic target site, and a linear nucleic acid capable of homologous recombination with itself or with one or more additional linear nucleic acids contacted with the population of cells, whereupon said homologous recombination results in formation of a circular extrachromosomal nucleic acid comprising a coding sequence for a selectable marker. In some embodiments, the methods further comprise selecting a host cell that expresses the selectable marker.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: August 7, 2018
    Assignee: AMYRIS, INC.
    Inventors: Andrew Horwitz, Kristy Michelle Hawkins, Max Schubert, Wayne Szeto
  • Publication number: 20170058299
    Abstract: Provided herein are methods of integrating one or more exogenous nucleic acids into one or more selected target sites of a host cell genome. In certain embodiments, the methods comprise contacting the host cell genome with one or more integration polynucleotides comprising an exogenous nucleic acid to be integrated into a genomic target site, a nuclease capable of causing a break at the genomic target site, and a linear nucleic acid capable of homologous recombination with itself or with one or more additional linear nucleic acids contacted with the population of cells, whereupon said homologous recombination results in formation of a circular extrachromosomal nucleic acid comprising a coding sequence for a selectable marker. In some embodiments, the methods further comprise selecting a host cell that expresses the selectable marker.
    Type: Application
    Filed: September 9, 2016
    Publication date: March 2, 2017
    Applicant: Amyris, Inc.
    Inventors: Andrew Horwitz, Kristy Michelle Hawkins, Max Schubert, Wayne Szeto
  • Patent number: 9476065
    Abstract: Provided herein are methods of integrating one or more exogenous nucleic acids into one or more selected target sites of a host cell genome. In certain embodiments, the methods comprise contacting the host cell genome with one or more integration polynucleotides comprising an exogenous nucleic acid to be integrated into a genomic target site, a nuclease capable of causing a break at the genomic target site, and a linear nucleic acid capable of homologous recombination with itself or with one or more additional linear nucleic acids contacted with the population of cells, whereupon said homologous recombination results in formation of a circular extrachromosomal nucleic acid comprising a coding sequence for a selectable marker. In some embodiments, the methods further comprise selecting a host cell that expresses the selectable marker.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: October 25, 2016
    Assignee: AMYRIS, INC.
    Inventors: Andrew Horwitz, Kristy Michelle Hawkins, Max Schubert, Wayne Szeto
  • Publication number: 20150184199
    Abstract: Provided herein are methods of integrating one or more exogenous nucleic acids into one or more selected target sites of a host cell genome. In certain embodiments, the methods comprise contacting the host cell genome with one or more integration polynucleotides comprising an exogenous nucleic acid to be integrated into a genomic target site, a nuclease capable of causing a break at the genomic target site, and a linear nucleic acid capable of homologous recombination with itself or with one or more additional linear nucleic acids contacted with the population of cells, whereupon said homologous recombination results in formation of a circular extrachromosomal nucleic acid comprising a coding sequence for a selectable marker. In some embodiments, the methods further comprise selecting a host cell that expresses the selectable marker.
    Type: Application
    Filed: December 19, 2014
    Publication date: July 2, 2015
    Applicant: AMYRIS, INC.
    Inventors: Andrew Horwitz, Kristy Michelle Hawkins, Max Schubert, Wayne Szeto
  • Publication number: 20070025998
    Abstract: The invention concerns the identification of tumor antigens the expression of which is selectively upregulated by retinoid treatment. The invention further concerns improved methods of cancer treatment and, in particular, methods enhancing the efficacy of the treatment of cancers characterized by aberrant Wnt signaling by administration of retinoic acid or other retinoids.
    Type: Application
    Filed: July 18, 2006
    Publication date: February 1, 2007
    Applicant: Genentech Inc,
    Inventors: Diane Pennica, Paul Polakis, Wayne Szeto, David Tice
  • Publication number: 20020173461
    Abstract: The invention concerns the identification of tumor antigens the expression of which is selectively upregulated by retinoid treatment. The invention further concerns improved methods of cancer treatment and, in particular, methods enhancing the efficacy of the treatment of cancers characterized by aberrant Wnt signaling by administration of retinoic acid or other retinoids.
    Type: Application
    Filed: July 10, 2001
    Publication date: November 21, 2002
    Inventors: Diane Pennica, Paul Polakis, Wayne Szeto, David Tice