Patents by Inventor Wayne Victor Sorin

Wayne Victor Sorin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240113490
    Abstract: Examples described herein relate to an optical device. The optical device includes a first microring resonator (MRR) laser having a first resonant frequency and a first free spectral range (FSR). The first FSR is greater than a channel spacing of the optical device. Further, the optical device includes a first frequency-dependent filter formed along a portion of the first MRR laser via a common bus waveguide to attenuate one or more frequencies different from the first resonant frequency. A length of the common bus waveguide is chosen to achieve a second FSR of the common bus waveguide to be substantially equal to the channel spacing to enable a single-mode operation for the optical device. Moreover, the optical device includes a first reflector formed at a first end of the common bus waveguide to enhance a unidirectionality of optical signal within the first MRR laser.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Inventors: Stanley Cheung, Wayne Victor Sorin, Yuan Yuan, Raymond G. Beausoleil, Di Liang
  • Publication number: 20240039244
    Abstract: Implementations disclosed herein provide semiconductor resonator based optical multiplexers that achieve enhanced bandwidth range of light emitted therefrom. The present disclosure integrates silicon devices into resonator structures, such as micro-ring resonators, that couples a side mode with a lasing mode and resonantly amplifies coupled light to output light having an enhanced bandwidth with respect to the lasing mode. In some examples, the optical multiplexers disclosed herein include a bus waveguide; a first resonator structure optically coupled to the bus waveguide and comprising an optical amplification mechanism that generates light and a single mode filter to force the generated light into single-mode operation; and a second resonator structure optically coupled to the first resonator structure and comprising a phase-tuning mechanism. The phase-tuning mechanism can be controlled to detune phase of light in the second resonator relative to the light in the first resonator.
    Type: Application
    Filed: July 27, 2022
    Publication date: February 1, 2024
    Inventors: STANLEY CHEUNG, DI LIANG, RAYMOND G. BEAUSOLEIL, MICHAEL RENNE TY TAN, WAYNE VICTOR SORIN
  • Publication number: 20230350238
    Abstract: Examples described herein relate to an optical device that entails phase shifting an optical signal. The optical device includes an optical waveguide having a first semiconductor material region and a second semiconductor material region formed adjacent to each other and defining a junction therebetween. Further, the optical device includes an insulating layer formed on top of the optical waveguide. Moreover, the optical device includes a III-V semiconductor layer formed on top of the insulating layer causing an optical mode of an optical signal passing through the optical waveguide to overlap with the first semiconductor material region, the second semiconductor material region, the insulating layer, and the III-V semiconductor layer thereby resulting in a phase shift in the optical signal passing through the optical waveguide.
    Type: Application
    Filed: April 28, 2022
    Publication date: November 2, 2023
    Inventors: Yuan Yuan, Wayne Victor Sorin, Stanley Cheung
  • Publication number: 20230283396
    Abstract: Systems and methods are provided for achieving graceful bandwidth scaling (i.e. higher data transmission rates) for Coarse Wavelength Division Multiplexing (CWDM) and CWDM-4 technologies. Examples utilize a waveband architecture built around the CWDM wavelengths. This waveband architecture adds additional wavelength transmission channels (which may equate to faster data transmission rates) while maintaining backwards compatibility with existing CWDM/CWDM-4 technologies. Examples may include waveband devices (e.g. waveband light sources, waveband transmitters, waveband receivers, waveband transceivers, etc.) designed to operate with one or more CWDM wavebands while maintaining backwards compatibility with existing CWDM-4 technologies.
    Type: Application
    Filed: March 4, 2022
    Publication date: September 7, 2023
    Inventors: SAGI VARGHESE MATHAI, Michael Renne ty TAN, Wayne Victor SORIN
  • Patent number: 11588298
    Abstract: Coupled-cavity vertical cavity surface emitting lasers (VCSELs) are provided by the present disclosure. The coupled-cavity VCSEL can comprise a VCSEL having a first mirror, a gain medium disposed above the first mirror, and a second mirror disposed above the gain medium, wherein a first cavity is formed by the first mirror and the second mirror. A second cavity is optically coupled to the VCSEL and configured to reflect light emitted from the VCSEL back into the first cavity of the VCSEL. In some embodiments, the second cavity can be an external cavity optically coupled to the VCSEL through a coupling component. In some embodiments, the second cavity can be integrated with the VCSEL to form a monolithic coupled-cavity VCSEL. A feedback circuit can control operation of the coupled-cavity VCSEL so the output comprises a target high frequency signal.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: February 21, 2023
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Stanley Cheung, Michael Renne Ty Tan, Binhao Wang, Wayne Victor Sorin, Chao-Kun Lin
  • Patent number: 11437323
    Abstract: A silicon interposer may include an on-chip DC blocking capacitor, comprising: a first electrical connection to couple to a supply voltage and to cathodes of a plurality of photodiodes formed in a two-dimensional photodiode array on a first substrate, and a second electrical connection to couple to ground and to ground inputs of a plurality of transimpedance amplifiers on a second substrate; wherein the on-chip DC blocking capacitor is configured to be shared among a plurality of receiver circuits comprising the plurality of photodiodes and the plurality of transimpedance amplifiers; and wherein the silicon interposer comprises a substrate separate from the first substrate and the second substrate.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: September 6, 2022
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Binhao Wang, Wayne Victor Sorin, Michael Renne Ty Tan
  • Publication number: 20210399522
    Abstract: Coupled-cavity vertical cavity surface emitting lasers (VCSELs) are provided by the present disclosure. The coupled-cavity VCSEL can comprise a VCSEL having a first mirror, a gain medium disposed above the first mirror, and a second mirror disposed above the gain medium, wherein a first cavity is formed by the first mirror and the second mirror. A second cavity is optically coupled to the VCSEL and configured to reflect light emitted from the VCSEL back into the first cavity of the VCSEL. In some embodiments, the second cavity can be an external cavity optically coupled to the VCSEL through a coupling component. In some embodiments, the second cavity can be integrated with the VCSEL to form a monolithic coupled-cavity VCSEL. A feedback circuit can control operation of the coupled-cavity VCSEL so the output comprises a target high frequency signal.
    Type: Application
    Filed: June 23, 2020
    Publication date: December 23, 2021
    Inventors: Stanley CHEUNG, Michael Renne Ty TAN, Binhao WANG, Wayne Victor SORIN, Chao-Kun LIN
  • Publication number: 20210384132
    Abstract: A silicon interposer may include an on-chip DC blocking capacitor, comprising: a first electrical connection to couple to a supply voltage and to cathodes of a plurality of photodiodes formed in a two-dimensional photodiode array on a first substrate, and a second electrical connection to couple to ground and to ground inputs of a plurality of transimpedance amplifiers on a second substrate; wherein the on-chip DC blocking capacitor is configured to be shared among a plurality of receiver circuits comprising the plurality of photodiodes and the plurality of transimpedance amplifiers; and wherein the silicon interposer comprises a substrate separate from the first substrate and the second substrate.
    Type: Application
    Filed: June 3, 2020
    Publication date: December 9, 2021
    Inventors: BINHAO WANG, WAYNE VICTOR SORIN, MICHAEL RENNE TY TAN
  • Patent number: 11056603
    Abstract: Resonant cavity photodetector structures which integrate photodetection and filtering capabilities is described. A resonant cavity photodetector structure generally can comprise a region including a resonator, and an absorption region that can be integrated into a cavity of the resonator. The resonator can perform filtering that is suitable for high-bandwidth optical communications, such as Dense Wavelength Multiplexing (DWDM). In some cases, the resonator is a microring resonator. An absorption region can include a photodiode which performs optical energy detection acting as a photodetector, such as an avalanche photodiode (APD) wherein the photodiode. A coupling distance between the resonator region and the absorption region can be controlled, which allows control of a coupling strength between an optical mode of the resonator and the absorption region such that a quality factor (Q-factor) can be tuned.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: July 6, 2021
    Inventors: Zhihong Huang, Xiaoge Zeng, Wayne Victor Sorin
  • Publication number: 20210141171
    Abstract: Examples herein relate to optical modules. In particular, implementations herein relate to optical modules that include top-emitting VCSELs and/or top-entry photodetectors. The optical modules include a first interposer having opposing first and second sides and a second interposer having opposing first and second sides. The optical modules include a plurality of top-emitting vertical-cavity surface-emitting lasers (VCSELs) coupled to the second interposer and a plurality of electrical conductors forming electrical paths between electrical contacts of the top-emitting VCSELs and the second side of the second interposer. The VCSELs are configured to emit optical signals having different wavelengths. The optical signals are configured to be combined and transmitted over a single optical fiber.
    Type: Application
    Filed: November 7, 2019
    Publication date: May 13, 2021
    Inventors: Sagi Varghese Mathai, Paul Kessler Rosenberg, Wayne Victor Sorin, Michael Renne Ty Tan
  • Patent number: 11002912
    Abstract: In the examples provided herein, a system includes an input waveguide, where a first end of the input waveguide is coupled to a light-emitting optical transmitter to allow the emitted light to enter the input waveguide, and a first ring resonator tunable to be resonant at a first resonant wavelength, wherein the first ring resonator is positioned near the input waveguide to couple a light at the first resonant wavelength from the input waveguide to the first ring resonator. The system also has a bus waveguide positioned to couple the light at the first resonant wavelength in the first ring resonator to the bus waveguide, and a mechanism to wavelength-tune the first ring resonator to a particular wavelength.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: May 11, 2021
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Joaquin Matres, Wayne Victor Sorin, Sagi Mathai, Lars Helge Thylen, Michael Renne Ty Tan
  • Patent number: 11002926
    Abstract: Examples herein relate to optical modules. In particular, implementations herein relate to optical modules that include top-emitting VCSELs and/or top-entry photodetectors. The optical modules include a first interposer having opposing first and second sides and a second interposer having opposing first and second sides. The optical modules include a plurality of top-emitting vertical-cavity surface-emitting lasers (VCSELs) coupled to the second interposer and a plurality of electrical conductors forming electrical paths between electrical contacts of the top-emitting VCSELs and the second side of the second interposer. The VCSELs are configured to emit optical signals having different wavelengths. The optical signals are configured to be combined and transmitted over a single optical fiber.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: May 11, 2021
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Sagi Varghese Mathai, Paul Kessler Rosenberg, Wayne Victor Sorin, Michael Renne Ty Tan
  • Patent number: 10983279
    Abstract: An example block assembly for optical signal filtering is provided herein. The block assembly includes a base with at least one aperture to receive a mandrel in a plurality of adjustable positions and orientations relative to an axis of the base. The block assembly also includes a first member and a second member extending from the base.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: April 20, 2021
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Kevin Leigh, John Norton, Wayne Victor Sorin
  • Patent number: 10978854
    Abstract: In example implementations of a vertical-cavity surface-emitting laser (VCSEL), the VCSEL includes a p-type distributed Bragg reflector (p-DBR) layer and a p-type ohmic (p-ohmic) contact layer adjacent to the p-DBR layer. The p-DBR layer may include an oxide aperture and the p-ohmic contact layer may have an opening that is aligned with the oxide aperture. The opening may be filled with a dielectric material. A metal layer may be coupled to the p-ohmic contact layer and encapsulate the dielectric material.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: April 13, 2021
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Sagi Mathai, Michael Renne Ty Tan, Wayne Victor Sorin
  • Patent number: 10976508
    Abstract: Optical modules are disclosed. An example optical module includes a substrate comprising a grating coupler, an optical connector removably coupled to the substrate adjacent the grating coupler to optically couple the optical connector and the grating coupler and an integrated circuit coupled to the substrate.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: April 13, 2021
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Sagi Varghese Mathai, Wayne Victor Sorin, Michael Renne Ty Tan
  • Patent number: 10895688
    Abstract: In example implementations, an optical connector is provided. The optical connector includes a jumper holder, a base bracket, and an optical ferrule. The jumper holder holds a plurality of ribbon fibers. The base bracket is coupled to an electrical substrate to mate with the jumper holder. The optical ferrule is coupled to an end of each one of the plurality of ribbon fibers. The optical ferrule is laterally inserted into a corresponding orthogonal socket that is coupled to a silicon interposer on the electrical substrate to optically mate the optical ferrule to the orthogonal socket.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: January 19, 2021
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Kevin B. Leigh, Paul Kessler Rosenberg, Sagi Mathai, Mir Ashkan Seyedi, Michael Renne Ty Tan, Wayne Victor Sorin, Marco Fiorentino
  • Publication number: 20210013356
    Abstract: Resonant cavity photodetector structures which integrate photodetection and filtering capabilities is described. A resonant cavity photodetector structure generally can comprise a region including a resonator, and an absorption region that can be integrated into a cavity of the resonator. The resonator can perform filtering that is suitable for high-bandwidth optical communications, such as Dense Wavelength Multiplexing (DWDM). In some cases, the resonator is a microring resonator. An absorption region can include a photodiode which performs optical energy detection acting as a photodetector, such as an avalanche photodiode (APD) wherein the photodiode. A coupling distance between the resonator region and the absorption region can be controlled, which allows control of a coupling strength between an optical mode of the resonator and the absorption region such that a quality factor (Q-factor) can be tuned.
    Type: Application
    Filed: September 12, 2019
    Publication date: January 14, 2021
    Inventors: ZHIHONG HUANG, XIAOGE ZENG, WAYNE VICTOR SORIN
  • Publication number: 20200371289
    Abstract: An example block assembly for optical signal filtering is provided herein. The block assembly includes a base with at least one aperture to receive a mandrel in a plurality of adjustable positions and orientations relative to an axis of the base. The block assembly also includes a first member and a second member extending from the base.
    Type: Application
    Filed: July 18, 2016
    Publication date: November 26, 2020
    Inventors: Kevin Leigh, John Norton, Wayne Victor Sorin
  • Publication number: 20200343695
    Abstract: Examples herein relate to optical modules. In particular, implementations herein relate to optical modules that include top-emitting VCSELs and/or top-entry photodetectors. The optical modules include a substrate having opposing first and second sides. The optical modules further includes a first interposer having opposing first and second sides and a plurality of top-emitting vertical-cavity surface-emitting lasers (VCSELs). The VCSELs are flip-chipped to the second side of the first interposer such that they are disposed between the substrate and the first interposer. The VCSELs are configured to emit optical signals having different wavelengths. The optical signals are configured to be combined and transmitted over a single optical fiber. The optical modules include a plurality of electrical conductors forming electrical paths between electrical contacts of the top-emitting VCSELs and the substrate.
    Type: Application
    Filed: April 29, 2019
    Publication date: October 29, 2020
    Inventors: Sagi Varghese Mathai, Paul Kessler Rosenberg, Wayne Victor Sorin, Michael Renne Ty Tan
  • Patent number: 10788633
    Abstract: In example implementations, an apparatus is provided. The apparatus includes an optical transmission component and an optical reception component. The optical transmission component includes a plurality of lasers and a transmit filter. The plurality of lasers each emit a different wavelength of light. The transmit filter includes a plurality of different regions that correspond to one of the different wavelengths of light emitted by the plurality of lasers. The optical reception component includes a plurality of photodiodes and a complementary reverse order (CRO) filter. The CRO filter includes a same plurality of different regions as the transmit filter in a reverse order.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: September 29, 2020
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Kevin B. Leigh, Paul Kessler Rosenberg, Sagi Mathai, Wayne Victor Sorin, Michael Renne Ty Tan, Georgios Panotopoulos