Patents by Inventor Weiwen Xu

Weiwen Xu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240167010
    Abstract: Provided are a genetically modified cell line producing a recombinant glycoprotein having a mannose-terminated N-glycan and a method for producing the recombinant glycoprotein or a method for generating the cell, clone or cell line. The cell line comprises an insertion of less than 600 bp in the coding region of a chromosomal sequence encoding MGAT1.
    Type: Application
    Filed: April 21, 2021
    Publication date: May 23, 2024
    Applicant: WUXI BIOLOGICS IRELAND LIMITED
    Inventors: Liqin XU, Fenglin WANG, Yangfang ZHOU, Yangzi PENG, Jiexing CAI, Weichang ZHOU, Xiaobo XI, Weiwen WANG, Tingting WANG, Chunsheng YANG, Quanmin CHEN, Jeremy GUO
  • Patent number: 11940707
    Abstract: A high-speed and low-voltage electro-optical modulator based on a lithium niobate-silicon wafer. A silicon wafer is located above a lithium niobate wafer; a lithium niobate-silicon hybrid waveguide is formed by etching a silicon waveguide; and the power of light waves is differently distributed in the lithium niobate-silicon hybrid waveguide by changing the structure of the silicon waveguide. When higher power is distributed in the silicon waveguide, the high-speed and low-voltage electro-optical modulator is suitable for realizing a compact wave splitting function, a wave combining function and a thermo-optical modulation function; and when higher power is distributed in the lithium niobate waveguide, the high-speed and low-voltage electro-optical modulator is suitable for realizing a high-speed and low-voltage electro-optical modulation function.
    Type: Grant
    Filed: December 9, 2021
    Date of Patent: March 26, 2024
    Assignee: Shanghai Jiao Tong University
    Inventors: Weiwen Zou, Jing Wang, Shaofu Xu
  • Patent number: 11423575
    Abstract: A method of characterizing an imaging device includes calibrating the imaging device by collecting readings for regular pixels and at least one sealed pixel of the imaging device over one or more periods of time for a sequence of integration time (T) and a plurality of number of lines (NOL) when no light enters the imaging device, obtaining a dark level (DL) by averaging the readings for the regular pixels over the respective period of time and the number of the regular pixels, and obtaining P by averaging the readings of the at least one sealed pixel over the respective period of time and the number of the at least one sealed pixel. A relation between DL and P is determined for each T and NOL using an equation: DL=A*P+Offset. A current value of DL is determined by using a current value of P and the equation.
    Type: Grant
    Filed: June 1, 2021
    Date of Patent: August 23, 2022
    Assignee: Tokyo Electron Limited
    Inventors: Feng Ma, Weiwen Xu
  • Patent number: 9059038
    Abstract: Disclosed is an in-situ optical monitor (ISOM) system and associated method for controlling plasma etching processes during the forming of stepped structures in semiconductor manufacturing. The in-situ optical monitor (ISOM) can be optionally configured for coupling to a surface-wave plasma source (SWP), for example a radial line slotted antenna (RLSA) plasma source. A method is described to correlate the lateral recess of the steps and the etched thickness of a photoresist layer for use with the in-situ optical monitor (ISOM) during control of plasma etching processes in the forming of stepped structures.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: June 16, 2015
    Assignee: Tokyo Electron Limited
    Inventors: Shifang Li, Junwei Bao, Hanyou Chu, Wen Jin, Ching-Ling Meng, Weiwen Xu, Ping Wang, Holger Tuitje, Mihail Mihaylov, Xinkang Tian
  • Publication number: 20140024143
    Abstract: Disclosed is an in-situ optical monitor (ISOM) system and associated method for controlling plasma etching processes during the forming of stepped structures in semiconductor manufacturing. The in-situ optical monitor (ISOM) can be optionally configured for coupling to a surface-wave plasma source (SWP), for example a radial line slotted antenna (RLSA) plasma source. A method is described to correlate the lateral recess of the steps and the etched thickness of a photoresist layer for use with the in-situ optical monitor (ISOM) during control of plasma etching processes in the forming of stepped structures.
    Type: Application
    Filed: July 18, 2013
    Publication date: January 23, 2014
    Applicant: Tokyo Electron Limited
    Inventors: Shifang LI, Junwei Bao, Hanyou Chu, Wen Jin, Ching-Ling Meng, Weiwen Xu, Ping Wang, Holger Tuitje, Mihail Mihaylov, Xinkang Tian