Patents by Inventor Wen-Chun YOU

Wen-Chun YOU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240113043
    Abstract: A semiconductor device and methods of fabrication thereof including a substrate, a doped well formed in the substrate, a transistor formed on the substrate, a dielectric material located over the doped well and the transistor and including interconnect structures extending through the dielectric material, the interconnect structures including a first set of interconnect structures electrically coupled to an active region of the transistor and a second set of interconnect structures electrically coupled to the doped well, an active memory cell electrically coupled to the active region of the transistor via the first set of interconnect structures; and a dummy memory cell electrically coupled to the doped well via the second set of conductive interconnect structures. The dummy memory cell and the second set of conductive interconnect structures may provide a low resistance pathway for plasma charge to flow to the doped well, thereby minimizing plasma induced damage to the transistor.
    Type: Application
    Filed: April 20, 2023
    Publication date: April 4, 2024
    Inventors: Harry-Hak-Lay Chuang, Hung Cho Wang, Wen-Chun You
  • Publication number: 20230380187
    Abstract: An MRAM memory cell includes a substrate and a transistor. The transistor includes: first and second source regions; a drain region between the first and second source regions; a first channel region between the drain region and the first source region; a second channel region between the drain region and the second source region; a first gate structure over the first channel region; and a second gate structure over the second channel region. A magnetic tunnel junction is overlying the transistor. The drain region is coupled to the magnetic tunnel junction. A first metal layer is overlying the transistor, and a second metal layer is overlying the first metal layer. The second and first metal layers couple a common source line signal to the first and second source regions of the MRAM memory cell and to those of a neighboring MRAM memory cell.
    Type: Application
    Filed: July 31, 2023
    Publication date: November 23, 2023
    Inventors: Harry-Hak-Lay CHUANG, Wen-Chun YOU, Hung Cho WANG, Yen-Yu SHIH
  • Patent number: 11800724
    Abstract: An MRAM memory cell includes a substrate and a transistor. The transistor includes: first and second source regions; a drain region between the first and second source regions; a first channel region between the drain region and the first source region; a second channel region between the drain region and the second source region; a first gate structure over the first channel region; and a second gate structure over the second channel region. A magnetic tunnel junction is overlying the transistor. The drain region is coupled to the magnetic tunnel junction. A first metal layer is overlying the transistor, and a second metal layer is overlying the first metal layer. The second and first metal layers couple a common source line signal to the first and second source regions of the MRAM memory cell and to those of a neighboring MRAM memory cell.
    Type: Grant
    Filed: December 27, 2021
    Date of Patent: October 24, 2023
    Inventors: Harry-Hak-Lay Chuang, Wen-Chun You, Hung Cho Wang, Yen-Yu Shih
  • Patent number: 11723292
    Abstract: The present disclosure, in some embodiments, relates to a memory device. The memory device includes a dielectric protection layer having sidewalls defining an opening over a conductive interconnect within an inter-level dielectric (ILD) layer. A bottom electrode structure extends from within the opening to directly over the dielectric protection layer. A variable resistance layer is over the bottom electrode structure and a top electrode is over the variable resistance layer. A top electrode via is disposed on the top electrode and directly over the dielectric protection layer.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: August 8, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Yang Chang, Wen-Ting Chu, Kuo-Chi Tu, Yu-Wen Liao, Hsia-Wei Chen, Chin-Chieh Yang, Sheng-Hung Shih, Wen-Chun You
  • Patent number: 11653572
    Abstract: Some embodiments relate to a magnetoresistive random-access memory (MRAM) cell. The cell includes a bottom electrode having a central bottom electrode portion surrounded by a peripheral bottom electrode portion. Step regions of the conductive bottom electrode couple the central and peripheral bottom electrode portions to one another such that an upper surface of the central portion is recessed relative to an upper surface of the peripheral portion. A magnetic tunneling junction (MTJ) has MTJ outer sidewalls which are disposed over the bottom central electrode portion and which are arranged between the step regions. A top electrode is disposed over an upper surface of the MTJ. Other devices and methods are also disclosed.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: May 16, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Harry-Hak-Lay Chuang, Hung Cho Wang, Tien-Wei Chiang, Wen-Chun You
  • Publication number: 20230061882
    Abstract: A memory device includes an one-time-programmable (OTP) memory unit. The OTP memory unit includes a first gate, a first conductive segment and a second conductive segment of a first structure, and a first magnetic tunnel junction (MTJ) component. The first gate is formed across an active region, and corresponds to gate terminals of a first transistor and a second transistor. The first conductive segment and the second conductive segment of the first structure are formed above the active region, and correspond to a first source/drain terminal of the first transistor and a first source/drain terminal of the second transistor, respectively. The first MTJ component is formed in a first conductive layer above the active region, and is coupled to the first conductive segment and the second conductive segment for receiving a programming signal from a data line. A method for fabricating a memory device is also disclosed herein.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 2, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Harry-Hak-Lay CHUANG, Wen-Chun YOU, Hung-Cho WANG
  • Publication number: 20220246843
    Abstract: Some embodiments relate to a semiconductor structure having a magnetic tunnel junction (MTJ) on a substrate and a top electrode on the MTJ. A first segment of a top surface of the top electrode adjacent to a first sidewall of the top electrode is different from a second segment of the top surface of the top electrode adjacent to a second sidewall of the top electrode. A sidewall spacer comprises a first spacer on the first sidewall of the top electrode and a second spacer on the second sidewall of the top electrode. A first surface of the first spacer comprises a first curve and a second surface of the second spacer comprises a second curve. A dielectric layer is around the MTJ and top electrode.
    Type: Application
    Filed: April 21, 2022
    Publication date: August 4, 2022
    Inventors: Harry-Hak-Lay Chuang, Chen-Pin Hsu, Hung Cho Wang, Wen-Chun You, Sheng-Chang Chen, Tsun Chung Tu, Jiunyu Tsai, Sheng-Huang Huang
  • Publication number: 20220123051
    Abstract: An MRAM memory cell includes a substrate and a transistor. The transistor includes: first and second source regions; a drain region between the first and second source regions; a first channel region between the drain region and the first source region; a second channel region between the drain region and the second source region; a first gate structure over the first channel region; and a second gate structure over the second channel region. A magnetic tunnel junction is overlying the transistor. The drain region is coupled to the magnetic tunnel junction. A first metal layer is overlying the transistor, and a second metal layer is overlying the first metal layer. The second and first metal layers couple a common source line signal to the first and second source regions of the MRAM memory cell and to those of a neighboring MRAM memory cell.
    Type: Application
    Filed: December 27, 2021
    Publication date: April 21, 2022
    Inventors: Harry-Hak-Lay CHUANG, Wen-Chun YOU, Hung Cho WANG, Yen-Yu SHIH
  • Patent number: 11244983
    Abstract: The present disclosure provides a system and method for forming a reduced area MRAM memory cell including a substrate, a transistor overlying the substrate and a magnetic tunnel junction overlying the transistor. The transistor includes a first and second source regions, a drain region between the first and second source regions, at least one first channel region between the drain region and the first source region, at least one second channel region between the drain region and the second source region, a first gate structure overlying the at least one first channel region, and a second gate structure overlying the at least one second channel region. First and second metal layers overlie the transistor. The first and second metal layers are configured to couple a common source line signal to the first and second source regions.
    Type: Grant
    Filed: June 4, 2020
    Date of Patent: February 8, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Harry-Hak-Lay Chuang, Wen-Chun You, Hung Cho Wang, Yen-Yu Shih
  • Publication number: 20210351345
    Abstract: Some embodiments relate to an integrated chip having a memory cell overlying a substrate and comprising a top electrode. A top electrode via overlies the top electrode. A width of an upper surface of the top electrode via is greater than a width of an upper surface of the top electrode. A conductive via overlies the top electrode via. A width of an upper surface of the conductive via is greater than the width of the upper surface of the top electrode via.
    Type: Application
    Filed: July 21, 2021
    Publication date: November 11, 2021
    Inventors: Harry-Hak-Lay Chuang, Chen-Pin Hsu, Hung Cho Wang, Wen-Chun You, Sheng-Chang Chen, Tsun Chung Tu, Jiunyu Tsai, Sheng-Huang Huang
  • Patent number: 11075335
    Abstract: Some embodiments relate to a method for manufacturing a memory device. The method includes forming a first masking layer disposed over a dielectric layer, the first masking layer exhibiting sidewalls defining an opening disposed above a magnetoresistive random-access memory (MRAM) cell located in an embedded memory region. A first etch is performed to form a first via opening within the dielectric layer above the MRAM cell. A top electrode via layer formed over the MRAM cell and the dielectric layer. A first planarization process performed on the top electrode via layer to remove part of the top electrode via layer and define a top electrode via having a substantially flat top surface.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: July 27, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Harry-Hak-Lay Chuang, Chen-Pin Hsu, Hung Cho Wang, Wen-Chun You, Sheng-Chang Chen, Tsun Chung Tu, Jiunyu Tsai, Sheng-Huang Huang
  • Publication number: 20210184110
    Abstract: Some embodiments relate to a magnetoresistive random-access memory (MRAM) cell. The cell includes a bottom electrode having a central bottom electrode portion surrounded by a peripheral bottom electrode portion. Step regions of the conductive bottom electrode couple the central and peripheral bottom electrode portions to one another such that an upper surface of the central portion is recessed relative to an upper surface of the peripheral portion. A magnetic tunneling junction (MTJ) has MTJ outer sidewalls which are disposed over the bottom central electrode portion and which are arranged between the step regions. A top electrode is disposed over an upper surface of the MTJ. Other devices and methods are also disclosed.
    Type: Application
    Filed: February 25, 2021
    Publication date: June 17, 2021
    Inventors: Harry-Hak-Lay Chuang, Hung Cho Wang, Tien-Wei Chiang, Wen-Chun You
  • Patent number: 10937957
    Abstract: Some embodiments relate to a magnetoresistive random-access memory (MRAM) cell. The cell includes a bottom electrode having a central bottom electrode portion surrounded by a peripheral bottom electrode portion. Step regions of the conductive bottom electrode couple the central and peripheral bottom electrode portions to one another such that an upper surface of the central portion is recessed relative to an upper surface of the peripheral portion. A magnetic tunneling junction (MTJ) has MTJ outer sidewalls which are disposed over the bottom central electrode portion and which are arranged between the step regions. A top electrode is disposed over an upper surface of the MTJ. Other devices and methods are also disclosed.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: March 2, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Harry-Hak-Lay Chuang, Hung Cho Wang, Tien-Wei Chiang, Wen-Chun You
  • Publication number: 20200411590
    Abstract: The present disclosure provides a system and method for forming a reduced area MRAM memory cell including a substrate, a transistor overlying the substrate and a magnetic tunnel junction overlying the transistor. The transistor includes a first and second source regions, a drain region between the first and second source regions, at least one first channel region between the drain region and the first source region, at least one second channel region between the drain region and the second source region, a first gate structure overlying the at least one first channel region, and a second gate structure overlying the at least one second channel region. First and second metal layers overlie the transistor. The first and second metal layers are configured to couple a common source line signal to the first and second source regions.
    Type: Application
    Filed: June 4, 2020
    Publication date: December 31, 2020
    Inventors: Harry-Hak-Lay CHUANG, Wen-Chun YOU, Hung Cho WANG, Yen-Yu SHIH
  • Patent number: 10878928
    Abstract: Various embodiments of the present application are directed towards a one-time-programmable (OTP) implementation using magnetic junctions. In some embodiments, an array comprises multiple magnetic junctions in multiple columns and multiple rows, and the magnetic junctions comprise a first magnetic junction and a second magnetic junction. The first and second magnetic junctions comprise individual top ferromagnetic elements and individual bottom ferromagnetic elements, and further comprise individual barrier elements between the top and bottom ferromagnetic elements. A first barrier element of the first magnetic junction electrically separates first top and bottom ferromagnetic elements of the first magnetic junction. A second barrier element of the second magnetic junction has undergone breakdown, such that it has defects defining a leakage path between second top and bottom ferromagnetic elements of the second magnetic junction.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: December 29, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Harry-Hak-Lay Chuang, Tien-Wei Chiang, Wen-Chun You, Yi-Chieh Chiu, Yu-Lin Chen, Jian-Cheng Huang, Chang-Hung Chen
  • Patent number: 10868250
    Abstract: A semiconductor structure includes a memory region. A memory structure is disposed on the memory region. The memory structure includes a first electrode, a resistance variable layer, protection spacers and a second electrode. The first electrode has a top surface and a first outer sidewall surface on the memory region. The resistance variable layer has a first portion and a second portion. The first portion is disposed over the top surface of the first electrode and the second portion extends upwardly from the first portion. The protection spacers are disposed over a portion of the top surface of the first electrode and surround the second portion of the resistance variable layer. The protection spacers are configurable to protect at least one conductive path in the resistance variable layer. The protection spacers have a second outer sidewall surface substantially aligned with the first outer sidewall surface of the first electrode.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: December 15, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Chi Tu, Chih-Yang Chang, Hsia-Wei Chen, Chin-Chieh Yang, Sheng-Hung Shih, Wen-Chun You, Wen-Ting Chu, Yu-Wen Liao
  • Patent number: 10868234
    Abstract: A storage device includes: a plurality of first magnetic tunnel junction (MTJ) cells disposed on a first portion of a substrate; and a plurality of second MTJ cells disposed on a second portion different from the first portion of the substrate; wherein each of the plurality of first MTJ cells has a first cross-sectional surface area viewing from a top of the substrate, each of the plurality of second MTJ cells has a second cross-sectional surface area viewing from the top of the substrate, and the second cross-sectional surface area is greater than the first cross-sectional surface area.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: December 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Harry-Hak-Lay Chuang, Chang-Hung Chen, Kuei-Hung Shen, Wen-Chun You, Tien-Wei Chiang
  • Patent number: 10862029
    Abstract: Some embodiments relate to a device. The device includes a top electrode and a via disposed over the top electrode. A peripheral upper surface of the top electrode is above a central upper surface of the top electrode, and a tapered inner sidewall of the top electrode connects the peripheral upper surface to the central upper surface. The via establishes electrical contact with the tapered inner sidewall but is spaced apart from the central upper surface.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: December 8, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsia-Wei Chen, Wen-Ting Chu, Kuo-Chi Tu, Chih-Yang Chang, Chin-Chieh Yang, Yu-Wen Liao, Wen-Chun You, Sheng-Hung Shih
  • Publication number: 20200335694
    Abstract: The present disclosure, in some embodiments, relates to a memory device. The memory device includes a dielectric protection layer having sidewalls defining an opening over a conductive interconnect within an inter-level dielectric (ILD) layer. A bottom electrode structure extends from within the opening to directly over the dielectric protection layer. A variable resistance layer is over the bottom electrode structure and a top electrode is over the variable resistance layer. A top electrode via is disposed on the top electrode and directly over the dielectric protection layer.
    Type: Application
    Filed: June 24, 2020
    Publication date: October 22, 2020
    Inventors: Chih-Yang Chang, Wen-Ting Chu, Kuo-Chi Tu, Yu-Wen Liao, Hsia-Wei Chen, Chin-Chieh Yang, Sheng-Hung Shih, Wen-Chun You
  • Patent number: 10700275
    Abstract: The present disclosure, in some embodiments, relates to a memory device. The memory device includes a bottom electrode via and a bottom electrode over a top of the bottom electrode via. A data storage layer is over the bottom electrode and a top electrode is over the data storage layer. A top electrode via is on an upper surface of the top electrode and is centered along a first line that is laterally offset from a second line centered upon a bottommost surface of the bottom electrode via. The first line is perpendicular to the upper surface of the top electrode and parallel to the second line.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: June 30, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Yang Chang, Wen-Ting Chu, Kuo-Chi Tu, Yu-Wen Liao, Hsia-Wei Chen, Chin-Chieh Yang, Sheng-Hung Shih, Wen-Chun You