Patents by Inventor Wenhuan Yu

Wenhuan Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11973509
    Abstract: A phase-locked loop (PLL) that provides a local oscillator signal for a radio. An oscillator of the PLL supplies an oscillator output signal. Control logic receives a request to change the oscillator output signal to a new frequency and responds to the request by setting a first capacitor circuit of the oscillator to a first capacitance that corresponds to a predetermined frequency of the oscillator output signal. The control logic also responds to the request by setting one or more other capacitor circuits of the oscillator according to temperature and according to a frequency difference between the predetermined frequency and the new frequency. After responding to the request by setting the first capacitor circuit and the one or more other capacitor circuits, the PLL locks to the new frequency using a signal from the PLL loop filter to adjust another capacitor circuit in the oscillator.
    Type: Grant
    Filed: March 31, 2022
    Date of Patent: April 30, 2024
    Assignee: Silicon Laboratories Inc.
    Inventors: Rangakrishnan Srinivasan, Zhongda Wang, Francesco Barale, Wenhuan Yu, Mustafa H. Koroglu, Yan Zhou, Terry L. Dickey
  • Publication number: 20230318609
    Abstract: A phase-locked loop (PLL) that provides a local oscillator signal for a radio. An oscillator of the PLL supplies an oscillator output signal. Control logic receives a request to change the oscillator output signal to a new frequency and responds to the request by setting a first capacitor circuit of the oscillator to a first capacitance that corresponds to a predetermined frequency of the oscillator output signal. The control logic also responds to the request by setting one or more other capacitor circuits of the oscillator according to temperature and according to a frequency difference between the predetermined frequency and the new frequency. After responding to the request by setting the first capacitor circuit and the one or more other capacitor circuits, the PLL locks to the new frequency using a signal from the PLL loop filter to adjust another capacitor circuit in the oscillator.
    Type: Application
    Filed: March 31, 2022
    Publication date: October 5, 2023
    Inventors: Rangakrishnan Srinivasan, Zhongda Wang, Francesco Barale, Wenhuan Yu, Mustafa H. Koroglu, Yan Zhou, Terry L. Dickey
  • Patent number: 11699974
    Abstract: A frequency synthesizer on an integrated circuit provides a local oscillator (LO) signal for RF operations and also functions as an injection clock signal source during crystal oscillator startup. The integrated circuit goes into a sleep mode in which the crystal oscillator is off and responsive to a wakeup event the crystal oscillator starts up again using the injection clock signal sourced from the frequency synthesizer. Parameters that cause the injection clock signal to match the crystal oscillator frequency are stored. The frequency synthesizer includes a phase-locked loop having an LC oscillator. A digital to analog converter controls the LC oscillator during injection. During an initial power up of the integrated circuit, a PLL in the frequency synthesizer locks to the crystal oscillator frequency to determine the parameters to store for injection.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: July 11, 2023
    Assignee: Silicon Laboratories Inc.
    Inventors: Mohamed M. Elkholy, Mustafa Koroglu, Wenhuan Yu
  • Patent number: 10826501
    Abstract: A calibration operation adjusts a frequency of a ring oscillator to a desired frequency by adjusting programmable RC circuits in the stages of the ring oscillator. The programmable RC circuits have programmable capacitors, resistors, or both. The RC circuits account for most of the delay through the ring oscillator. Another circuit with its own RC time constant is calibrated based on the adjustments made to the RC circuits in the ring oscillator to achieve the desired frequency.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: November 3, 2020
    Assignee: Silicon Laboratories Inc.
    Inventors: Abdulkerim L. Coban, Wenhuan Yu, Mustafa H. Koroglu
  • Patent number: 10734977
    Abstract: In one form, an analog-to-digital converter (ADC) includes first and second ring-oscillator ADCs, a modulus subtractor, and a decimation filter. The first and second ring-oscillator ADCs are responsive to true and complement input voltages, respectively, have outputs for providing first and second digital phase signals, respectively, each having a first predetermined number of bits sampled at a first frequency. The modulus subtractor subtracts the second digital phase signal from the first digital phase signal to provide a phase difference signal. The decimation filter differentiates the phase difference signal at a second frequency lower than said the frequency to provide a frequency signal proportional to a differential voltage between the true input voltage and the complementary input voltage, and decimates the frequency signal to provide a digital code having a second predetermined number of bits greater than the first predetermined number of bits.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: August 4, 2020
    Assignee: SILICON LABORATORIES INC.
    Inventors: Wenhuan Yu, Abdulkerim L. Coban
  • Patent number: 10523251
    Abstract: A communications receiver with improved blocker performance including multiple gain tables selected based on a number of reductions or back offs from a maximum coarse gain setting. A receiver chain with multiple gain stages converts a received signal to a digital format, determines the power level of the received signal, and provides an overload indication. A first gain table maximizes SNR and SNDR for weak blockers and at least one additional gain table successively improves SNDR for stronger blockers. An AGC circuit initially sets the coarse gain setting to maximum, and backs off a number of coarse gain steps until the receiver chain is not overloaded. The number of back off steps is used to select a gain table, the power level is used to select an entry in the selected table, and the selected entry includes gain settings for the gain stages of the receiver chain.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: December 31, 2019
    Assignee: Silicon Laboratories Inc.
    Inventors: Abdulkerim L. Coban, Emmanuel Gautier, Fabrice Portier, Pascal Blouin, Wenhuan Yu
  • Patent number: 9729162
    Abstract: In one form, a signal chain circuit includes a signal chain processing circuit between an input for receiving a differential input signal having a first common-mode voltage, and an output for providing a differential output signal having a second, different common-mode voltage. It includes an amplifier with a differential output stage coupled to a differential input stage and having positive and negative output terminals forming its output, and positive and negative feedback terminals. The differential output stage provides a first voltage drop between the positive output terminal and the positive feedback terminal, and a second voltage drop between the negative output terminal and the negative feedback terminal. The common-mode feedback circuit regulates a common-mode voltage between the positive and negative feedback terminals to the second common-mode voltage.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: August 8, 2017
    Inventors: Wenhuan Yu, Abdulkerim L. Coban
  • Patent number: 8854130
    Abstract: Techniques are disclosed relating to peak detection. In one embodiment, an apparatus is disclosed that includes an amplifier configured to amplify a signal. The apparatus further includes a peak detector DC coupled to an output of the amplifier. The peak detector includes a first comparator stage configured to perform subtraction of a threshold signal from the amplified signal. The peak detector further includes a second comparator stage is configured to amplify a differential output signal of the first comparator stage indicative of a result of the subtraction. In some embodiments, the amplifier and peak detector are included within automatic gain control system in a path for an in-phase or quadrature channel of the receiver chain.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: October 7, 2014
    Assignee: Silicon Laboratories Inc.
    Inventors: Abdulkarim Coban, Wenhuan Yu
  • Publication number: 20130342274
    Abstract: Techniques are disclosed relating to peak detection. In one embodiment, an apparatus is disclosed that includes an amplifier configured to amplify a signal. The apparatus further includes a peak detector DC coupled to an output of the amplifier. The peak detector includes a first comparator stage configured to perform subtraction of a threshold signal from the amplified signal. The peak detector further includes a second comparator stage is configured to amplify a differential output signal of the first comparator stage indicative of a result of the subtraction. In some embodiments, the amplifier and peak detector are included within automatic gain control system in a path for an in-phase or quadrature channel of the receiver chain.
    Type: Application
    Filed: June 25, 2012
    Publication date: December 26, 2013
    Inventors: Abdulkarim Coban, Wenhuan Yu
  • Patent number: 8406371
    Abstract: Programmable divider circuitry is disclosed that utilizes two cascaded divider cells to generate division ratios from 4 to 7 and utilizes an output signal from one of the divider cells to sample and synchronize the divider output signal. The operation of the programmable divider circuitry improves the consistency of duty cycles generated across the different division ratios. Further techniques are also applied to make more consistent the duty cycles depending upon the division ratio selected.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: March 26, 2013
    Assignee: Silicon Laboratories Inc.
    Inventors: Francesco Barale, Mustafa H. Koroglu, Wenhuan Yu