Patents by Inventor Wen-Hui Duan

Wen-Hui Duan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9147728
    Abstract: The present disclosure relates to a semiconductor nanostructure. The semiconductor nanostructure includes a substrate and at least one ridge. The substrate includes a first crystal plane and a second crystal plane perpendicular to the first crystal plane. The at least one ridge extends from the first crystal plane along a crystallographic orientation of the second crystal plane. A width of cross section at a position of half the height of the at least one ridge is less than 17 nm. The semiconductor nanostructure is a patterned structure which can lead to generate a quantum confinement effect, such that the impurity scattering phenomenon is reduced.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: September 29, 2015
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Jian Wu, Zheng Liu, Wen-Hui Duan, Bing-Lin Gu
  • Patent number: 8796664
    Abstract: A graphene-based composite structure is disclosed. The graphene-based composite structure includes a graphene layer, a transition metal layer, and a substrate. The graphene layer, transition metal layer, and substrate are stacked together in series to form a sandwich structure. The graphene layer and the transition metal layer are coupled by d-p orbitals hybridization. The transition metal layer and the substrate are also coupled by d-p orbitals hybridization. A method for making graphene-based composite structure is also disclosed.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: August 5, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Wen-Hui Duan, Yuan-Chang Li, Peng-Cheng Chen, Jian Wu, Bing-Lin Gu
  • Publication number: 20140110662
    Abstract: A graphene-based composite structure is disclosed. The graphene-based composite structure includes a graphene layer, a transition metal layer, and a substrate. The graphene layer, transition metal layer, and substrate are stacked together in series to form a sandwich structure. The graphene layer and the transition metal layer are coupled by d-p orbitals hybridization. The transition metal layer and the substrate are also coupled by d-p orbitals hybridization. A method for making graphene-based composite structure is also disclosed.
    Type: Application
    Filed: November 26, 2012
    Publication date: April 24, 2014
    Inventors: WEN-HUI DUAN, YUAN-CHANG LI, PENG-CHENG CHEN, JIAN WU, BING-LIN GU
  • Publication number: 20110127639
    Abstract: The present disclosure relates to a semiconductor nanostructure. The semiconductor nanostructure includes a substrate and at least one ridge. The substrate includes a first crystal plane and a second crystal plane perpendicular to the first crystal plane. The at least one ridge extends from the first crystal plane along a crystallographic orientation of the second crystal plane. A width of cross section at a position of half the height of the at least one ridge is less than 17 nm. The semiconductor nanostructure is a patterned structure which can lead to generate a quantum confinement effect, such that the impurity scattering phenomenon is reduced.
    Type: Application
    Filed: July 23, 2010
    Publication date: June 2, 2011
    Applicants: TSINGHUA UNIVERSITY, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: JIAN WU, ZHENG LIU, WEN-HUI DUAN, BING-LIN GU
  • Patent number: 7604877
    Abstract: A ferroelectric film includes a plurality of ferroelectric nanodomains configured in a regularly staggered fashion. The ferroelectric film has a quasi 2-dimensional configuration and is comprised of a ferroelectric material. A method for forming a ferroelectric film is also provided. A ferroelectric film comprised of a ferroelectric material is prepared. The ferroelectric film has a quasi 2-dimensional configuration and defines a direction that is normal to the quasi 2-dimensional configuration. An electric field along the normal direction is applied to the ferroelectric film, thereby the ferroelectric film having an array of ferroelectric nanodomains configured in a regularly staggered fashion is obtained.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: October 20, 2009
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Wen-Hui Duan, Zhong-Qing Wu, Jian Wu, Bing-Lin Gu
  • Patent number: 7459682
    Abstract: An exemplary spin-polarized electron source includes a cathode, and a one-dimensional nanostructure made of a compound (e.g., group III-V) semiconductor with local polarized gap states. The one-dimensional nanostructure includes a first end portion electrically connected with the cathode and a second end portion located/directed away from the cathode. The second end portion of the one-dimensional nanostructure functions as a polarized electron emission tip and is configured (i.e., structured and arranged) for emitting a spin-polarized electron current/beam under an effect of selectably one of a magnetic field induction and a circularly polarized light beam excitation when a predetermined negative bias voltage is applied to the cathode. Furthermore, a spin-polarized scanning tunneling microscope incorporating such a spin-polarized electron source is also provided.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: December 2, 2008
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Wen-Hui Duan, Shao-Gang Hao, Gang Zhou, Jian Wu, Bing-Lin Gu
  • Publication number: 20080073554
    Abstract: An exemplary spin-polarized electron source includes a cathode, and a one-dimensional nanostructure made of a compound (e.g., group III-V) semiconductor with local polarized gap states. The one-dimensional nanostructure includes a first end portion electrically connected with the cathode and a second end portion located/directed away from the cathode. The second end portion of the one-dimensional nanostructure functions as a polarized electron emission tip and is configured (i.e., structured and arranged) for emitting a spin-polarized electron current/beam under an effect of selectably one of a magnetic field induction and a circularly polarized light beam excitation when a predetermined negative bias voltage is applied to the cathode. Furthermore, a spin-polarized scanning tunneling microscope incorporating such a spin-polarized electron source is also provided.
    Type: Application
    Filed: November 14, 2006
    Publication date: March 27, 2008
    Applicants: TSINGHUA UNIVERSITY, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: WEN-HUI DUAN, SHAO-GANG HAO, GANG ZHOU, JIAN WU, BING-LIN GU
  • Publication number: 20070072010
    Abstract: A ferroelectric film includes a plurality of ferroelectric nanodomains configured in a regularly staggered fashion. The ferroelectric film has a quasi 2-dimensional configuration and is comprised of a ferroelectric material. A method for forming a ferroelectric film is also provided. A ferroelectric film comprised of a ferroelectric material is prepared. The ferroelectric film has a quasi 2-dimensional configuration and defines a direction that is normal to the quasi 2-dimensional configuration. An electric field along the normal direction is applied to the ferroelectric film, thereby the ferroelectric film having an array of ferroelectric nanodomains configured in a regularly staggered fashion is obtained.
    Type: Application
    Filed: May 10, 2006
    Publication date: March 29, 2007
    Applicants: Tsinghua University, HON HAI Precision Industry CO., LTD.
    Inventors: Wen-Hui Duan, Zhong-Qing Wu, Jian Wu, Bing-Lin Gu