Patents by Inventor Wen-I Hsu

Wen-I Hsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240153979
    Abstract: A method of manufacturing an image sensor structure includes forming an isolation structure in a substrate to divide the substrate into a first region and a second region, forming a first light sensing region in the first region and a second light sensing region in the second region, forming a first gate structure over the first light sensing region and a second gate structure over the second light sensing region, forming gate spacers on sidewalls of the first and second gate structures, and depositing a blocking layer on sidewalls of the gate spacers. The blocking layer has an opening positioned between the first and second gate structures. A source/drain structure is formed directly under the opening in the blocking layer. The method also includes forming an interlayer dielectric layer over the first and second gate structures and the blocking layer.
    Type: Application
    Filed: April 13, 2023
    Publication date: May 9, 2024
    Inventors: Wei Long CHEN, Wen-I HSU, Feng-Chi HUNG, Jen-Cheng LIU, Dun-Nian YAUNG
  • Patent number: 11923338
    Abstract: A method includes bonding a first wafer to a second wafer, with a first plurality of dielectric layers in the first wafer and a second plurality of dielectric layers in the second wafer bonded between a first substrate of the first wafer and a second substrate in the second wafer. A first opening is formed in the first substrate, and the first plurality of dielectric layers and the second wafer are etched through the first opening to form a second opening. A metal pad in the second plurality of dielectric layers is exposed to the second opening. A conductive plug is formed extending into the first and the second openings.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Ying Ho, Jeng-Shyan Lin, Wen-I Hsu, Feng-Chi Hung, Dun-Nian Yaung, Ying-Ling Tsai
  • Publication number: 20240030261
    Abstract: Various embodiments of the present disclosure are directed towards an image sensor including a plurality of photodetectors disposed within a substrate. The photodetectors are disposed respectively within a plurality of pixel regions. A floating diffusion node is disposed along a front-side surface of the substrate at a middle region of the plurality of pixel regions. A plurality of well regions is disposed within the substrate at corners of the plurality of pixel regions. An isolation structure extends into a back-side surface of the substrate. The isolation structure comprises a plurality of elongated isolation components disposed between adjacent pixel regions, a middle isolation component aligned with the floating diffusion node, and multiple peripheral isolation components aligned with the plurality of well regions. The elongated isolation components have a first height and the middle and peripheral isolation components have a second height less than the first height.
    Type: Application
    Filed: January 5, 2023
    Publication date: January 25, 2024
    Inventors: Wen-I Hsu, Hsin-Hung Chen, Dun-Nian Yaung, Jen-Cheng Liu, Feng-Chi Hung, Wen-Chang Kuo
  • Publication number: 20240021641
    Abstract: Various embodiments of the present disclosure are directed towards an image sensor. The image sensor comprise a substrate having a first region and a second region. A first gate overlies the first region. A second gate overlies the second region. A deep trench isolation (DTI) structure is in the substrate and laterally between the first region and the second region. A first floating diffusion node is in the first region. A second floating diffusion node is in the second region. An interlayer dielectric (ILD) structure is over the substrate. A dielectric structure is between the ILD structure and the substrate. The dielectric structure is laterally between the first and second floating diffusion nodes. The dielectric structure is laterally spaced from the first and second gates. The dielectric structure overlies the DTI structure. A width of the dielectric structure is greater than a width of the DTI structure.
    Type: Application
    Filed: January 4, 2023
    Publication date: January 18, 2024
    Inventors: Wei Long Chen, Wen-I Hsu, Feng-Chi Hung, Jen-Cheng Liu, Dun-Nian Yaung
  • Publication number: 20230420464
    Abstract: The present disclosure relates to semiconductor device with a multi-gate structure. The semiconductor device includes a substrate and a doped region disposed within the substrate. A gate electrode is disposed over the doped region, and a source region and a drain region are disposed within the doped region. A shallow trench isolation (STI) structure is disposed within the substrate and laterally surrounds the source region and the drain region. A first doped liner is disposed along the STI structure, where the first doped liner separates the STI structure from the source region and the drain region. A second doped liner is disposed along the STI structure, where the second doped liner is separated from the first doped liner by the STI structure above a bottom surface of the STI structure.
    Type: Application
    Filed: June 23, 2022
    Publication date: December 28, 2023
    Inventors: Chih-Kuan Yu, Shen-Hui Hong, Feng-Chi Hung, Wen-I Hsu, Jen-Cheng Liu, Dun-Nian Yaung
  • Publication number: 20230275109
    Abstract: A semiconductor image sensing structure includes a substrate having a first region and a second region, a metal grid in the first region, and a hybrid metal shield in the second region. The hybrid metal shield includes a first metallization layer, a second metallization layer disposed over the first metallization layer, a third metallization layer disposed over the second metallization layer, and a fourth metallization layer disposed over the third metallization layer. An included angle of the second metallization layer is between approximately 40° and approximately 60°.
    Type: Application
    Filed: January 28, 2022
    Publication date: August 31, 2023
    Inventors: MING-HSIEN YANG, WEN-I HSU, KUAN-FU LU, FENG-CHI HUNG, JEN-CHENG LIU, DUN-NIAN YAUNG, CHUN-HAO CHOU, KUO-CHENG LEE
  • Publication number: 20220277127
    Abstract: A method for wafer bonding includes receiving a layout of a bonding layer with an asymmetric pattern, determining whether an asymmetry level of the layout is within a predetermined range by a design rule checker, modifying the layout to reduce the asymmetry level of the layout if the asymmetry level is beyond the predetermined range. The method also includes outputting the layout in a computer-readable format.
    Type: Application
    Filed: November 29, 2021
    Publication date: September 1, 2022
    Inventors: Shih-Han Huang, Wen-I Hsu, Shuang-Ji Tsai, Ming-Hsien Yang, Yen-Ting Chiang, Shyh-Fann Ting, Feng-Chi Hung, Jen-Cheng Liu, Dun-Nian Yaung
  • Patent number: 11189743
    Abstract: A photodetector includes: a substrate; a first semiconductor region, the first semiconductor region extending into the substrate from a front side of the substrate; and a second semiconductor region, the second semiconductor region further extending into the substrate from a bottom boundary of the first semiconductor region, wherein when the photodetector operates under a Geiger mode, the second semiconductor region is fully depleted to absorb a radiation source received from a back side of the substrate.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: November 30, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Yu Wei, Yu-Ting Kao, Yen-Liang Lin, Wen-I Hsu, Hsun-Ying Huang, Kuo-Cheng Lee, Hsin-Chi Chen
  • Patent number: 11114486
    Abstract: A device includes a semiconductor substrate and implant isolation region extending from a top surface of the semiconductor substrate into the semiconductor substrate surrounding an active region. A gate dielectric is disposed over an active region of the semiconductor substrate, wherein the gate dielectric extends over the implant isolation region. A gate electrode is disposed over the gate dielectric and an end cap dielectric layer is between the gate dielectric and the gate electrode over the implant isolation region.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: September 7, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Tzu-Hsuan Hsu, Wen-De Wang, Wen-I Hsu
  • Patent number: 11011567
    Abstract: An image sensor structure that includes a first semiconductor substrate having a plurality of imaging sensors; a first interconnect structure formed on the first semiconductor substrate; a second semiconductor substrate having a logic circuit; a second interconnect structure formed on the second semiconductor substrate, wherein the first and the second semiconductor substrates are bonded together in a configuration that the first and second interconnect structures are sandwiched between the first and second semiconductor substrates; and a backside deep contact (BDCT) feature extended from the first interconnect structure to the second interconnect structure, thereby electrically coupling the logic circuit to the image sensors.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: May 18, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Chun-Chieh Chuang, Feng-Chi Hung, Shuang-Ji Tsai, Jeng-Shyan Lin, Shu-Ting Tsai, Wen-I Hsu
  • Patent number: 10886320
    Abstract: An image-sensor device includes a substrate including a pixel region and a logic region. A logic transistor is disposed in the logic region and is surrounded by a logic isolation feature. A radiation-sensing region is disposed in the pixel region of the substrate. An epitaxial pixel isolation feature is disposed in the pixel region and surrounds the radiation-sensing region. A doped region with a same doping polarity as the radiation-sensing region is located between a bottom of the radiation-sensing region and the back surface of the substrate. The epitaxial pixel isolation feature is in direct contact with the doped region. The doped region extends continuously under the pixel region and the logic region. The epitaxial pixel isolation feature is in direct contact with the doped region, and the logic isolation feature is spaced apart from the doped region.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: January 5, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wen-I Hsu, Feng-Chi Hung, Chun-Chieh Chuang, Dun-Nian Yaung, Jen-Cheng Liu
  • Patent number: 10868058
    Abstract: The present disclosure, in some embodiments, relates to a method of forming an integrated chip. The method is performed by forming a gate dielectric layer over a substrate having a first photodetector region and forming a gate material over the gate dielectric layer. A dielectric protection layer is deposited over the gate dielectric layer and a first sidewall spacer is formed along a side of the gate material. The dielectric protection layer extends from a first location directly over the first photodetector region to a second location between the first sidewall spacer and the gate dielectric layer.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: December 15, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Hsien Chou, Wen-I Hsu, Tsun-Kai Tsao, Chih-Yu Lai, Jiech-Fun Lu, Yeur-Luen Tu
  • Publication number: 20200258865
    Abstract: A method includes bonding a first wafer to a second wafer, with a first plurality of dielectric layers in the first wafer and a second plurality of dielectric layers in the second wafer bonded between a first substrate of the first wafer and a second substrate in the second wafer. A first opening is formed in the first substrate, and the first plurality of dielectric layers and the second wafer are etched through the first opening to form a second opening. A metal pad in the second plurality of dielectric layers is exposed to the second opening. A conductive plug is formed extending into the first and the second openings.
    Type: Application
    Filed: April 20, 2020
    Publication date: August 13, 2020
    Inventors: Cheng-Ying Ho, Jeng-Shyan Lin, Wen-I Hsu, Feng-Chi Hung, Dun-Nian Yaung, Ying-Ling Tsai, Wen-I Hsu
  • Publication number: 20200212244
    Abstract: A photodetector includes: a substrate; a first semiconductor region, the first semiconductor region extending into the substrate from a front side of the substrate; and a second semiconductor region, the second semiconductor region further extending into the substrate from a bottom boundary of the first semiconductor region, wherein when the photodetector operates under a Geiger mode, the second semiconductor region is fully depleted to absorb a radiation source received from a back side of the substrate.
    Type: Application
    Filed: March 13, 2020
    Publication date: July 2, 2020
    Inventors: Chia-Yu WEI, Yu-Ting KAO, Yen-Liang LIN, Wen-I HSU, Hsun-Ying HUANG, Kuo-Cheng LEE, Hsin-Chi CHEN
  • Patent number: 10629765
    Abstract: A photodetector includes: a substrate having a first doping type; a first semiconductor region having a second doping type, the first semiconductor region extending into the substrate from a front side of the substrate; and a second semiconductor region having the first doping type, the second semiconductor region further extending into the substrate from a bottom boundary of the first semiconductor region, wherein when the photodetector operates under a Geiger mode, the second semiconductor region is fully depleted to absorb a radiation source received from a back side of the substrate.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: April 21, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Yu Wei, Yu-Ting Kao, Yen-Liang Lin, Wen-I Hsu, Hsun-Ying Huang, Kuo-Cheng Lee, Hsin-Chi Chen
  • Patent number: 10629568
    Abstract: A method includes bonding a first wafer to a second wafer, with a first plurality of dielectric layers in the first wafer and a second plurality of dielectric layers in the second wafer bonded between a first substrate of the first wafer and a second substrate in the second wafer. A first opening is formed in the first substrate, and the first plurality of dielectric layers and the second wafer are etched through the first opening to form a second opening. A metal pad in the second plurality of dielectric layers is exposed to the second opening. A conductive plug is formed extending into the first and the second openings.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: April 21, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Ying Ho, Jeng-Shyan Lin, Wen-I Hsu, Feng-Chi Hung, Dun-Nian Yaung, Ying-Ling Tsai
  • Publication number: 20200075659
    Abstract: An image sensor structure that includes a first semiconductor substrate having a plurality of imaging sensors; a first interconnect structure formed on the first semiconductor substrate; a second semiconductor substrate having a logic circuit; a second interconnect structure formed on the second semiconductor substrate, wherein the first and the second semiconductor substrates are bonded together in a configuration that the first and second interconnect structures are sandwiched between the first and second semiconductor substrates; and a backside deep contact (BDCT) feature extended from the first interconnect structure to the second interconnect structure, thereby electrically coupling the logic circuit to the image sensors.
    Type: Application
    Filed: November 8, 2019
    Publication date: March 5, 2020
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Chun-Chieh Chuang, Feng-Chi Hung, Shuang-Ji Tsai, Jen-Shyan Lin, Shu-Ting Tsai, Wen-I Hsu
  • Patent number: 10535697
    Abstract: An image sensor structure that includes a first semiconductor substrate having a plurality of imaging sensors; a first interconnect structure formed on the first semiconductor substrate; a second semiconductor substrate having a logic circuit; a second interconnect structure formed on the second semiconductor substrate, wherein the first and the second semiconductor substrates are bonded together in a configuration that the first and second interconnect structures are sandwiched between the first and second semiconductor substrates; and a backside deep contact (BDCT) feature extended from the first interconnect structure to the second interconnect structure, thereby electrically coupling the logic circuit to the image sensors.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: January 14, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Chun-Chieh Chuang, Feng-Chi Hung, Shuang-Ji Tsai, Jen-Shyan Lin, Shu-Ting Tsai, Wen-I Hsu
  • Publication number: 20190252354
    Abstract: A method includes bonding a first wafer to a second wafer, with a first plurality of dielectric layers in the first wafer and a second plurality of dielectric layers in the second wafer bonded between a first substrate of the first wafer and a second substrate in the second wafer. A first opening is formed in the first substrate, and the first plurality of dielectric layers and the second wafer are etched through the first opening to form a second opening. A metal pad in the second plurality of dielectric layers is exposed to the second opening. A conductive plug is formed extending into the first and the second openings.
    Type: Application
    Filed: April 22, 2019
    Publication date: August 15, 2019
    Inventors: Cheng-Ying Ho, Jeng-Shyan Lin, Wen-I Hsu, Feng-Chi Hung, Dun-Nian Yaung, Ying-Ling Tsai
  • Publication number: 20190244990
    Abstract: An image-sensor device includes a substrate including a pixel region and a logic region. A logic transistor is disposed in the logic region and is surrounded by a logic isolation feature. A radiation-sensing region is disposed in the pixel region of the substrate. An epitaxial pixel isolation feature is disposed in the pixel region and surrounds the radiation-sensing region. A doped region with a same doping polarity as the radiation-sensing region is located between a bottom of the radiation-sensing region and the back surface of the substrate. The epitaxial pixel isolation feature is in direct contact with the doped region. The doped region extends continuously under the pixel region and the logic region. The epitaxial pixel isolation feature is in direct contact with the doped region, and the logic isolation feature is spaced apart from the doped region.
    Type: Application
    Filed: April 18, 2019
    Publication date: August 8, 2019
    Inventors: Wen-I Hsu, Feng-Chi Hung, Chun-Chieh Chuang, Dun-Nian Yaung, Jen-Cheng Liu