Patents by Inventor Wenbing Yun

Wenbing Yun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160066870
    Abstract: An x-ray interferometric imaging system in which the x-ray source comprises a target having a plurality of structured coherent sub-sources of x-rays embedded in a thermally conducting substrate. The structures may be microstructures with lateral dimensions measured on the order of microns, and in some embodiments, the structures are arranged in a regular array. The system additionally comprises a beam-splitting grating G1 that establishes a Talbot interference pattern, which may be a ? or ?/2 phase-shifting grating, an x-ray detector to convert two-dimensional x-ray intensities into electronic signals, and in some embodiments, also comprises an additional analyzer grating G2 that may be placed in front of the detector to form additional interference fringes. Systems may also include a means to translate and/or rotate the relative positions of the x-ray source and the object under investigation relative to the beam splitting grating and/or the analyzer grating for tomography applications.
    Type: Application
    Filed: November 17, 2015
    Publication date: March 10, 2016
    Applicant: Sigray, Inc.
    Inventors: Wenbing Yun, Sylvia Jia Yun Lewis, Janos Kirz, Alan Francis Lyon
  • Publication number: 20160064175
    Abstract: Disclosed are targets for generating x-rays using electron beams and their method of fabrication. They comprise a number of microstructures fabricated from an x-ray target material arranged in close thermal contact with a substrate such that the heat is more efficiently drawn out of the x-ray target material. This allows irradiation of the x-ray generating substance with higher electron density or higher energy electrons, leading to greater x-ray brightness, without inducing damage or melting. The microstructures may comprise conventional x-ray target materials (such as tungsten) that are patterned at micron-scale dimensions on a thermally conducting substrate, such as diamond. The microstructures may have any number of geometric shapes to best generate x-rays of high brightness and efficiently disperse heat. In some embodiments, the target comprising microstructures may be incorporated into a rotating anode geometry, to enhance x-ray generation in such systems.
    Type: Application
    Filed: August 29, 2014
    Publication date: March 3, 2016
    Applicant: SIGRAY, INC.
    Inventors: Wenbing YUN, Janos KIRZ, Sylvia Jia Yun LEWIS
  • Publication number: 20150357069
    Abstract: This disclosure presents systems for x-ray absorption fine structure (XAFS) measurements that have x-ray flux and flux density several orders of magnitude greater than existing compact systems. These are useful for laboratory or field applications of x-ray absorption near-edge spectroscopy (XANES) or extended x-ray fine absorption structure (EXFAS) spectroscopy. The higher brightness is achieved by using designs for x-ray targets that comprise a number of aligned microstructures of x-ray generating materials fabricated in close thermal contact with a substrate having high thermal conductivity. This allows for bombardment with higher electron density and/or higher energy electrons, leading to greater x-ray brightness and high flux. The high brightness x-ray source is then coupled to an x-ray reflecting optical system to collimate the x-rays, and a monochromator, which selects the exposure energy.
    Type: Application
    Filed: March 3, 2015
    Publication date: December 10, 2015
    Inventors: Wenbing Yun, Sylvia Jia Yun Lewis, Janos Kirz
  • Patent number: 9142382
    Abstract: An x-ray source is described. During operation of the x-ray source, an electron source emits a beam of electrons. This beam of electrons is focused to a spot on a target by a magnetic focusing lens. In particular, the magnetic focusing lens includes an immersion lens in which a peak in a magnitude of an associated magnetic field occurs proximate to a plane of the target. Moreover, in response to receiving the beam of focused electrons, the target provides a transmission source of x-rays.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: September 22, 2015
    Assignee: Carl Zeiss X-ray Microscopy, Inc.
    Inventors: David L. Adler, Wenbing Yun, Thomas Anthony Case
  • Publication number: 20150260663
    Abstract: Periodic spatial patterns of x-ray illumination are used to gather information about periodic objects. The structured illumination may be created using the interaction of a coherent or partially coherent x-ray source with a beam splitting grating to create a Talbot interference pattern with periodic structure. The object having periodic structures to be measured is then placed into the structured illumination, and the ensemble of signals from the multiple illumination spots is analyzed to determine various properties of the object and its structures. Applications to x-ray absorption/transmission, small angle x-ray scattering, x-ray fluorescence, x-ray reflectance, and x-ray diffraction are all possible using the method of the invention.
    Type: Application
    Filed: May 15, 2015
    Publication date: September 17, 2015
    Inventors: Wenbing Yun, Sylvia Jia Yun Lewis
  • Publication number: 20150247811
    Abstract: This disclosure presents systems for total reflection x-ray fluorescence measurements that have x-ray flux and x-ray flux density several orders of magnitude greater than existing x-ray technologies. These may therefore useful for applications such as trace element detection and/or for total-reflection fluorescence analysis. The higher brightness is achieved in part by using designs for x-ray targets that comprise a number of microstructures of one or more selected x-ray generating materials fabricated in close thermal contact with a substrate having high thermal conductivity. This allows for bombardment of the targets with higher electron density or higher energy electrons, which leads to greater x-ray brightness and therefore greater x-ray flux. The high brightness/high flux source may then be coupled to an x-ray reflecting optical system, which can focus the high flux x-rays to a spots that can be as small as one micron, leading to high flux density.
    Type: Application
    Filed: March 1, 2015
    Publication date: September 3, 2015
    Inventors: Wenbing Yun, Sylvia Jia Yun Lewis, Janos Kirz
  • Publication number: 20150243397
    Abstract: An x-ray interferometric imaging system in which the x-ray source comprises a target having a plurality of structured coherent sub-sources of x-rays embedded in a thermally conducting substrate. The system additionally comprises a beam-splitting grating G1 that establishes a Talbot interference pattern, which may be a ? phase-shifting grating, and an x-ray detector to convert two-dimensional x-ray intensities into electronic signals. The system may also comprise a second analyzer grating G2 that may be placed in front of the detector to form additional interference fringes, a means to translate the second grating G2 relative to the detector. The system may additionally comprise an antiscattering grid to reduce signals from scattered x-rays. Various configurations of dark-field and bright-field detectors are also disclosed.
    Type: Application
    Filed: April 29, 2015
    Publication date: August 27, 2015
    Inventors: Wenbing Yun, Sylvia Jia Yun Lewis, Janos Kirz
  • Publication number: 20150194287
    Abstract: This disclosure presents systems for x-ray illumination that have an x-ray brightness several orders of magnitude greater than existing x-ray technologies. These may therefore useful for applications such as trace element detection or for micro-focus fluorescence analysis. The higher brightness is achieved in part by using designs for x-ray targets that comprise a number of microstructures of one or more selected x-ray generating materials fabricated in close thermal contact with a substrate having high thermal conductivity. This allows for bombardment of the targets with higher electron density or higher energy electrons, which leads to greater x-ray flux. The high brightness/high flux x-ray source may then be coupled to an x-ray optical system, which can collect and focus the high flux x-rays to spots that can be as small as one micron, leading to high flux density.
    Type: Application
    Filed: December 8, 2014
    Publication date: July 9, 2015
    Inventors: Wenbing Yun, Sylvia Jia Yun Lewis, Janos Kirz
  • Publication number: 20150117599
    Abstract: We disclose an x-ray interferometric imaging system in which the x-ray source comprises a target having a plurality of structured coherent sub-sources of x-rays embedded in a thermally conducting substrate. The system additionally comprises a beam-splitting grating G1 that establishes a Talbot interference pattern, which may be a ? phase-shifting grating, and an x-ray detector to convert two-dimensional x-ray intensities into electronic signals. The system may also comprise a second analyzer grating G2 that may be placed in front of the detector to form additional interference fringes, and a means to translate the second grating G2 relative to the detector. In some embodiments, the structures are microstructures with lateral dimensions measured on the order of microns, and with a thickness on the order of one half of the electron penetration depth within the substrate. In some embodiments, the structures are formed within a regular array.
    Type: Application
    Filed: October 29, 2014
    Publication date: April 30, 2015
    Inventors: Wenbing Yun, Sylvia Jia Yun Lewis, Janos Kirz, Alan Francis Lyon
  • Patent number: 9016943
    Abstract: A cartridge-based cryogenic imaging system includes a sample handling system. This system uses a kinematic base and cold interface system that provides vertical loading to horizontally mounted high-precision rotation stages that are able to facilitate automated high-resolution three-dimensional (3D) imaging with computed tomography (CT). Flexible metal braids are used to provide cooling and also allow a large range of rotation. A robotic sample transfer and loading system provides further automation by allowing a number of samples to be loaded and automatically sequentially placed on the sample stage and imaged. These characteristics provide the capability of high-throughput and highly automated cryogenic x-ray microscopy and computed tomography.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: April 28, 2015
    Assignee: Carl Zeiss X-ray Microscopy, Inc.
    Inventors: Chris J. Jacobsen, Wenbing Yun
  • Publication number: 20150110252
    Abstract: We disclose a compact source for high brightness x-ray generation. The higher brightness is achieved through electron beam bombardment of multiple regions aligned with each other to achieve a linear accumulation of x-rays. This may be achieved by aligning discrete x-ray sources, or through the use of novel x-ray targets that comprise a number of microstructures of x-ray generating materials fabricated in close thermal contact with a substrate with high thermal conductivity. This allows heat to be more efficiently drawn out of the x-ray generating material, and in turn allows bombardment of the x-ray generating material with higher electron density and/or higher energy electrons, leading to greater x-ray brightness. The orientation of the microstructures allows the use of an on-axis collection angle, allowing the accumulation of x-rays from several microstructures to be aligned to appear to have a single origin, also known as “zero-angle” x-ray emission.
    Type: Application
    Filed: September 19, 2014
    Publication date: April 23, 2015
    Inventors: Wenbing Yun, Sylvia Jia Yun Lewis, Janos Kirz, Alan Francis Lyon
  • Publication number: 20150092924
    Abstract: We disclose targets for generating x-rays using electron beams, along with their method of fabrication. The targets comprise a number of microstructures fabricated from an x-ray target material arranged in close thermal contact with a substrate such that the heat is more efficiently drawn out of the x-ray target material. This in turn allows irradiation of the x-ray generating substance with higher electron density or higher energy electrons, which leads to greater x-ray brightness, without inducing damage or melting. The microstructures may comprise conventional x-ray target materials (such as tungsten) that are patterned at micron-scale dimensions on a thermally conducting substrate, such as diamond. The microstructures may have any number of geometric shapes to best generate x-rays of high brightness and efficiently disperse heat. In some embodiments, the target comprising microstructures may be incorporated into a rotating anode geometry, to enhance x-ray generation in such systems.
    Type: Application
    Filed: August 21, 2014
    Publication date: April 2, 2015
    Inventors: Wenbing Yun, Sylvia Yun Lewis, Janos Kirz
  • Patent number: 8995622
    Abstract: An x-ray source is described. During operation of the x-ray source, an electron source emits a beam of electrons. This beam of electrons is focused to a spot on a target by a magnetic focusing lens. In response to receiving the beam of focused electrons, the target provides a transmission source of x-rays. Moreover, a repositioning mechanism selectively repositions the beam of focused electrons to different locations on a surface of the target based on a feedback parameter associated with operation of the x-ray source. This feedback parameter may be based on: an intensity of the x-rays output by the x-ray source; a position of the x-rays output by the x-ray source; an elapsed time during operation of the x-ray source; a cross-sectional shape of the x-rays output by the x-ray source; and/or a spot size of the x-rays output by the x-ray source.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: March 31, 2015
    Assignee: Carl Zeiss X-ray Microscopy, Inc.
    Inventors: David L. Adler, Wenbing Yun, Thomas Anthony Case
  • Patent number: 8831179
    Abstract: During operation of an x-ray source, an electron source emits a beam of electrons. Moreover, a repositioning mechanism selectively repositions the beam of electrons on a surface of a target based on a feedback parameter, where a location of the beam of electrons on the surface of the target defines a spot size of x-rays output by the x-ray source. In response to receiving the beam of electrons, the target provides a transmission source of the x-rays. Furthermore, a beam-parameter detector provides the feedback parameter based on a physical characteristic associated with the beam of electrons and/or the x-rays output by the x-ray source. This physical characteristic may include: at least a portion of an optical spectrum emitted by the target, secondary electrons emitted by the target based on a cross-sectional shape of the beam of electrons; an intensity of the x-rays output by the target; and/or a current from the target.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: September 9, 2014
    Assignee: Carl Zeiss X-Ray Microscopy, Inc.
    Inventors: David L. Adler, Wenbing Yun, Thomas Anthony Case
  • Patent number: 8737565
    Abstract: A compound zone plate comprising a first zone plate frame including a first zone plate, a second zone plate frame including a second zone plate, and a base frame to which the first zone plate frame and the second zone plate frame are bonded. In examples, two more zone plates are added to make a four element optic. In the assembly process, the microbeads are used to ensure the parallelism, dial in the distance precisely between the zone plates by selecting the microbead size, possibly in response to the width of the frames, and ensure low friction lateral movement enabling nanometer precision alignment of the zone plates with respect to each other prior to being fixed by the adhesive. That is, when the frames are pressed together to ensure parallelism, it is still possible to align them to each other since the microbead layer facilitates the inplane movement of the alignment process.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: May 27, 2014
    Assignee: Carl Zeiss X-Ray Microscopy, Inc.
    Inventors: Alan Francis Lyon, Michael Feser, Wenbing Yun, Sharon Chen
  • Publication number: 20140072104
    Abstract: A cartridge-based cryogenic imaging system includes a sample handling system. This system uses a kinematic base and cold interface system that provides vertical loading to horizontally mounted high-precision rotation stages that are able to facilitate automated high-resolution three-dimensional (3D) imaging with computed tomography (CT). Flexible metal braids are used to provide cooling and also allow a large range of rotation. A robotic sample transfer and loading system provides further automation by allowing a number of samples to be loaded and automatically sequentially placed on the sample stage and imaged, These characteristics provide the capability of high-throughput and highly automated cryogenic x-ray microscopy and computed tomography.
    Type: Application
    Filed: November 15, 2013
    Publication date: March 13, 2014
    Inventors: Chris J. Jacobsen, Wenbing Yun
  • Patent number: 8602648
    Abstract: A cartridge-based cryogenic imaging system includes a sample handling system. This system uses a kinematic base and cold interface system that provides vertical loading to horizontally mounted high-precision rotation stages that are able to facilitate automated high-resolution three-dimensional (3D) imaging with computed tomography (CT). Flexible metal braids are used to provide cooling and also allow a large range of rotation. A robotic sample transfer and loading system provides further automation by allowing a number of samples to be loaded and automatically sequentially placed on the sample stage and imaged. These characteristics provide the capability of high-throughput and highly automated cryogenic x-ray microscopy and computed tomography.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: December 10, 2013
    Assignee: Carl Zeiss X-ray Microscopy, Inc.
    Inventors: Chris J. Jacobsen, Wenbing Yun
  • Patent number: 8526575
    Abstract: A compound zone plate comprising a first zone plate frame including a first zone plate, a second zone plate frame including a second zone plate, and a base frame to which the first zone plate frame and the second zone plate frame are bonded. In examples, two more zone plates are added to make a four element optic. In the assembly process, the microbeads are used to ensure the parallelism, dial in the distance precisely between the zone plates by selecting the microbead size, possibly in response to the width of the frames, and ensure low friction lateral movement enabling nanometer precision alignment of the zone plates with respect to each other prior to being fixed by the adhesive. That is, when the frames are pressed together to ensure parallelism, it is still possible to align them to each other since the microbead layer facilitates the inplane movement of the alignment process.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: September 3, 2013
    Assignee: Xradia, Inc.
    Inventors: Alan Francis Lyon, Michael Feser, Wenbing Yun, Sharon Chen
  • Patent number: 8353628
    Abstract: The position of the sample is measured and used to correct for any off-axis motion during tomography using x-ray projection microscope system with a rotation stage system. The position is sensed using a precision-machined, low-CTE gold-coated cylinder or disc and three to five capacitive distance sensors. The correction can then be performed purely as image processing in software, by applying an appropriate shift in X and Y of the captured x-ray projections. A calibration is often necessary for each system (gold disc plus sensors plus sample stage) to account for any machining errors of the gold disc or positioning errors of the capacitive sensors. This calibration should also be repeated whenever any maintenance is performed on the metrology setup.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: January 15, 2013
    Assignee: Xradia, Inc.
    Inventors: Wenbing Yun, Ying Xu, Frederick W. Duewer, Mason Freed, Chao-chih Hsu
  • Publication number: 20120269325
    Abstract: An x-ray source is described. During operation of the x-ray source, an electron source emits a beam of electrons. This beam of electrons is focused to a spot on a target by a magnetic focusing lens. In response to receiving the beam of focused electrons, the target provides a transmission source of x-rays. Moreover, a repositioning mechanism selectively repositions the beam of focused electrons to different locations on a surface of the target based on a feedback parameter associated with operation of the x-ray source. This feedback parameter may be based on: an intensity of the x-rays output by the x-ray source; a position of the x-rays output by the x-ray source; an elapsed time during operation of the x-ray source; a cross-sectional shape of the x-rays output by the x-ray source; and/or a spot size of the x-rays output by the x-ray source.
    Type: Application
    Filed: November 18, 2011
    Publication date: October 25, 2012
    Inventors: David L. Adler, Wenbing Yun, Thomas Anthony Case