Patents by Inventor Wenhe Lin

Wenhe Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6709912
    Abstract: A method for forming a dual Si—Ge poly-gates having different Ge concentrations is described. An NMOS active area and a PMOS active area are provided on a semiconductor substrate separated by an isolation region. A gate oxide layer is grown overlying the semiconductor substrate in each of the active areas. A polycrystalline silicon-germanium (Si—Ge) layer is deposited overlying the gate oxide layer wherein the polycrystalline Si—Ge layer has a first Ge concentration. The NMOS active area is blocked while the PMOS active area is exposed. Successive cycles of Ge plasma doping and laser annealing into the PMOS active area are performed to achieve a second Ge concentration higher than the first Ge concentration.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: March 23, 2004
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Chew-Hoe Ang, Jeffrey Chee Wei-Lun, Wenhe Lin, Jia Zhen Zheng
  • Publication number: 20040018674
    Abstract: A method of forming a silicon nitride-silicon dioxide, composite gate dielectric layer, offering reduced risk of boron penetration from an overlying boron doped polysilicon gate structure, has been developed. A porous, silicon rich silicon nitride layer is first deposited on a semiconductor substrate, allowing a subsequent thermal oxidation procedure to grow a thin silicon dioxide layer on the semiconductor substrate, underlying the porous, silicon rich silicon nitride layer. A two step anneal procedure is then employed with a first step performed in a nitrogen containing ambient to densify the porous, silicon rich silicon nitride layer, while a second step of the anneal procedure, performed in an inert ambient at a high temperature, reduces the foxed charge at the silicon dioxide-semiconductor interface.
    Type: Application
    Filed: July 25, 2002
    Publication date: January 29, 2004
    Applicant: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Chew Hoe Ang, Alan Lek, Wenhe Lin
  • Publication number: 20040007170
    Abstract: A process of fabricating a CMOS device comprised with super-steep retrograde (SSR), twin well regions, has been developed. The process features the use of two, selective epitaxial growth (SEG), procedures, with the first SEG procedure resulting in the growth of bottom silicon shapes in the PMOS, as well as in the NMOS region of the CMOS device. After implantation of the ions needed for the twin well regions, into the bottom silicon shapes, a second SEG procedure is employed resulting in growth of top silicon shapes on the underlying, implanted bottom silicon shapes. An anneal procedure then distributes the implanted ions resulting in an SSR N well region in the composite silicon shape located in the PMOS region, and resulting in an SSR P well region in the composite silicon shape located in the NMOS region of the CMOS device.
    Type: Application
    Filed: July 9, 2002
    Publication date: January 15, 2004
    Applicant: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Chew Hoe Ang, Wenhe Lin, Jia Zhen Zheng
  • Patent number: 6677652
    Abstract: Methods for forming dual-metal gate CMOS transistors are described. An NMOS and a PMOS active area of a semiconductor substrate are separated by isolation regions. A metal layer is deposited over a gate dielectric layer in each active area. Oxygen ions are implanted into the metal layer in one active area to form an implanted metal layer which is oxidized to form a metal oxide layer. Thereafter, the metal layer and the metal oxide layer are patterned to form a metal gate in one active area and a metal oxide gate in the other active area wherein the active area having the gate with the higher work function is the PMOS active area. Alternatively, both gates may be metal oxide gates wherein the oxide concentrations of the two gates differ. Alternatively, a dummy gate may be formed in each of the active areas and covered with a dielectric layer. The dielectric layer is planarized thereby exposing the dummy gates. The dummy gates are removed leaving gate openings to the semiconductor substrate.
    Type: Grant
    Filed: August 26, 2002
    Date of Patent: January 13, 2004
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Wenhe Lin, Mei-Sheng Zhou, Kin Leong Pey, Simon Chooi
  • Patent number: 6670248
    Abstract: A method for forming, on a semiconductor substrate, a dielectric layer having a variable thickness and composition. The dielectric layer so formed can be used to form electronic devices such as MOSFETS and CMOSFETS that require gate dielectrics of different thicknesses. On a silicon substrate in accord with the preferred embodiment, the method requires the formation of three regions, two with SiO2 layers of different thicknesses and a third region of substrate with no oxide. A final thin layer of high-k dielectric is formed covering the three regions, so that the region with no oxide has the thinnest dielectric layer of only high-k material and the other two regions have the high-k dielectric over SiO2 layers of different thickness. A final layer of gate electrode material can be formed and patterned to form the required device structure.
    Type: Grant
    Filed: August 7, 2002
    Date of Patent: December 30, 2003
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Chew Hoe Ang, Wenhe Lin, Jia Zhen Zheng
  • Patent number: 6664156
    Abstract: A method of fabrication of L-shaped spacers in a semiconductor device. A gate structure is provided over a substrate. We form a first dielectric layer over the gate dielectric layer and the substrate. Next, a second dielectric layer is formed over the first dielectric layer. Then, we form a third dielectric layer over the second dielectric layer. The third dielectric layer is anisotropically etched to form a disposable spacer on the second dielectric layer. The second dielectric layer and the first dielectric layer are anisotropically etched using the disposable spacer as a mask to form a top and a bottom L-shaped spacer. The disposable spacer is removed. In preferred embodiments, the first, second and third dielectric layers are formed by atomic layer deposition (ALD) or ALCVD processes.
    Type: Grant
    Filed: July 31, 2002
    Date of Patent: December 16, 2003
    Assignee: Chartered Semiconductor Manufacturing, LTD
    Inventors: Chew Hoe Ang, Eng Hua Lim, Wenhe Lin, Jia Zhen Zheng
  • Publication number: 20030075766
    Abstract: Methods for forming dual-metal gate CMOS transistors are described. An NMOS and a PMOS active area of a semiconductor substrate are separated by isolation regions. A metal layer is deposited over a gate dielectric layer in each active area. Oxygen ions are implanted into the metal layer in one active area to form an implanted metal layer which is oxidized to form a metal oxide layer. Thereafter, the metal layer and the metal oxide layer are patterned to form a metal gate in one active area and a metal oxide gate in the other active area wherein the active area having the gate with the higher work function is the PMOS active area. Alternatively, both gates may be metal oxide gates wherein the oxide concentrations of the two gates differ. Alternatively, a dummy gate may be formed in each of the active areas and covered with a dielectric layer. The dielectric layer is planarized thereby exposing the dummy gates. The dummy gates are removed leaving gate openings to the semiconductor substrate.
    Type: Application
    Filed: August 26, 2002
    Publication date: April 24, 2003
    Applicant: CHARTERED SEMICONDUCTOR MANUFACTURING LTD.
    Inventors: Wenhe Lin, Mei-Sheng Zhou, Kin Leong Pey, Simon Chooi
  • Patent number: 6534388
    Abstract: A process used to retard out diffusion of P type dopants from P type LDD regions, resulting in unwanted LDD series resistance increases, has been developed. The process features the formation of a nitrogen containing layer, placed between the P type LDD region and overlying silicon oxide regions, retarding the diffusion of boron from the LDD regions to the overlying silicon oxide regions, during subsequent high temperature anneals. The nitrogen containing layer, such as a thin silicon nitride layer, or a silicon oxynitride layer, formed during or after reoxidation of a P type polysilicon gate structure, is also formed in a region that also retards the out diffusion of P type dopants from the P type polysilicon gate structure.
    Type: Grant
    Filed: September 27, 2000
    Date of Patent: March 18, 2003
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Wenhe Lin, Zhong Dong, Simon Chooi, Kin Leong Pey
  • Patent number: 6524910
    Abstract: A process for forming a first group of gate structures, designed to operate at a lower voltage than a simultaneously formed second group of gate structures, has been developed. The process features the thermal growth of a first silicon dioxide gate insulator layer, on a portion of the semiconductor substrate used for the lower voltage gate structures, while simultaneously forming a thicker, second silicon dioxide gate insulator layer on a portion of the semiconductor substrate used for the higher voltage gate structures. The thermal growth of the first, and second silicon dioxide gate insulator layers is accomplished via diffusion of the oxidizing species: through a thick, composite silicon nitride layer, to obtain the thinner, first silicon dioxide gate insulator layer, on a first portion of the semiconductor substrate; and through a thinner, silicon nitride layer, to obtain the thicker, second silicon dioxide gate insulator layer, on a second portion of the semiconductor substrate.
    Type: Grant
    Filed: September 27, 2000
    Date of Patent: February 25, 2003
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Wenhe Lin, Kin Leong Pey, Mei Sheng Zhou, Zhong Dong, Simon Chooi
  • Patent number: 6486080
    Abstract: A new method of forming a metal oxide high dielectric constant layer in the manufacture of an integrated circuit device has been achieved. A substrate is provided. A metal oxide layer is deposited overlying the substrate by reacting a precursor with an oxidant gas in a chemical vapor deposition chamber. The metal oxide layer may comprise hafnium oxide or zirconium oxide. The precursor may comprise metal alkoxide, metal alkoxide containing halogen, metal &bgr;-diketonate, metal fluorinated &bgr;-diketonate, metal oxoacid, metal acetate, or metal alkene. The metal oxide layer is annealed to cause densification and to complete the formation of the metal oxide dielectric layer in the manufacture of the integrated circuit device. A composite metal oxide-silicon oxide (MO2-SiO2) high dielectric constant layer may be deposited using a precursor comprising metal tetrasiloxane.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: November 26, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Simon Chooi, Wenhe Lin, Mei Sheng Zhou
  • Patent number: 6475908
    Abstract: Methods for forming dual-metal gate CMOS transistors are described. An NMOS and a PMOS active area of a semiconductor substrate are separated by isolation regions. A metal layer is deposited over a gate dielectric layer in each active area. Silicon ions are implanted into the metal layer in one active area to form an implanted metal layer which is silicided to form a metal silicide layer. Thereafter, the metal layer and the metal silicide layer are patterned to form a metal gate in one active area and a metal silicide gate in the other active area wherein the active area having the gate with the higher work function is the PMOS active area. Alternatively, both gates may be metal silicide gates wherein the silicon concentrations of the two gates differ. Alternatively, a dummy gate may be formed in each of the active areas and covered with a dielectric layer. The dielectric layer is planarized thereby exposing the dummy gates. The dummy gates are removed leaving gate openings to the semiconductor substrate.
    Type: Grant
    Filed: October 18, 2001
    Date of Patent: November 5, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Wenhe Lin, Mei-Sheng Zhou, Kin Leong Pey, Simon Chooi
  • Patent number: 6458695
    Abstract: Methods for forming dual-metal gate CMOS transistors are described. An NMOS and a PMOS active area of a semiconductor substrate are separated by isolation regions. A metal layer is deposited over a gate dielectric layer in each active area. Oxygen ions are implanted into the metal layer in one active area to form an implanted metal layer which is oxidized to form a metal oxide layer. Thereafter, the metal layer and the metal oxide layer are patterned to form a metal gate in one active area and a metal oxide gate in the other active area wherein the active area having the gate with the higher work function is the PMOS active area. Alternatively, both gates may be metal oxide gates wherein the oxide concentrations of the two gates differ. Alternatively, a dummy gate may be formed in each of the active areas and covered with a dielectric layer. The dielectric layer is planarized thereby exposing the dummy gates. The dummy gates are removed leaving gate openings to the semiconductor substrate.
    Type: Grant
    Filed: October 18, 2001
    Date of Patent: October 1, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Wenhe Lin, Mei-Sheng Zhou, Kin Leong Pey, Simon Chooi
  • Patent number: 6403425
    Abstract: A new method is provided for the creation of layers of gate oxide of different thicknesses. A substrate is provided, the surface of the substrate is divided into a first surface region over which a thick layer of gate oxide has to be created and a second surface region over which a thin layer of gate oxide is to be created. Thick gate-oxide implants are performed into the surface of the substrate. A thick layer of gate oxide is created over the surface of the substrate, the thick layer of gate oxide is successively patterned for thin gate-oxide implants, comprising thin gate-oxide n-well/p-well, threshold, punchthrough implants, into the second surface region of the substrate. The thick layer of gate oxide is removed from the second surface region of the substrate. The (now contaminated) top layer of the thick layer of gate oxide is removed, a thin layer of gate oxide is grown over the second surface region of the substrate.
    Type: Grant
    Filed: November 27, 2001
    Date of Patent: June 11, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Chew-Hoe Ang, Wenhe Lin, Jia Zhen Zheng
  • Publication number: 20020064970
    Abstract: A new method of forming a metal oxide high dielectric constant layer in the manufacture of an integrated circuit device has been achieved. A substrate is provided. A metal oxide layer is deposited overlying the substrate by reacting a precursor with an oxidant gas in a chemical vapor deposition chamber. The metal oxide layer may comprise hafnium oxide or zirconium oxide. The precursor may comprise metal alkoxide, metal alkoxide containing halogen, metal &bgr;-diketonate, metal fluorinated &bgr;-diketonate, metal oxoacid, metal acetate, or metal alkene. The metal oxide layer is annealed to cause densification and to complete the formation of the metal oxide dielectric layer in the manufacture of the integrated circuit device. A composite metal oxide-silicon oxide (MO2-SiO2) high dielectric constant layer may be deposited using a precursor comprising metal tetrasiloxane.
    Type: Application
    Filed: November 30, 2000
    Publication date: May 30, 2002
    Applicant: Chartered Semiconductor Manufacturing Inc.
    Inventors: Simon Chooi, Wenhe Lin, Mei Sheng Zhou