Patents by Inventor Wenjian Cai

Wenjian Cai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11835652
    Abstract: Described are LiDAR systems comprising a transmission optical system and a collection optical system utilizing a common lens or pieces derived from the same lens to reduce or eliminate image mismatch between the transmission optical system and the collection optical system.
    Type: Grant
    Filed: February 25, 2022
    Date of Patent: December 5, 2023
    Assignee: Nuro, Inc.
    Inventors: Lu Gao, Wenjian Cai
  • Publication number: 20220342041
    Abstract: Described are LiDAR systems comprising a transmission optical system and a collection optical system utilizing a common lens or pieces derived from the same lens to reduce or eliminate image mismatch between the transmission optical system and the collection optical system.
    Type: Application
    Filed: February 25, 2022
    Publication date: October 27, 2022
    Applicant: Nuro, Inc.
    Inventors: Lu GAO, Wenjian CAI
  • Patent number: 11294035
    Abstract: Described are LiDAR systems comprising a transmission optical system and a collection optical system utilizing a common lens or pieces derived from the same lens to reduce or eliminate image mismatch between the transmission optical system and the collection optical system.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: April 5, 2022
    Assignee: NURO, INC.
    Inventors: Lu Gao, Wenjian Cai
  • Patent number: 11061116
    Abstract: Described are LiDAR systems including an apparatus configured to translate one or more spherical lenses, an array of light sources, an array of photodetectors, or any combination thereof of a collection optical system in the Z direction (optical axis) to move the image plane of the collection optical system and match the image size between a transmission optical system and the collection optical system.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: July 13, 2021
    Assignee: Nuro, Inc.
    Inventors: Lu Gao, Wenjian Cai
  • Publication number: 20190018109
    Abstract: Described are LiDAR systems including an apparatus configured to translate one or more spherical lenses, an array of light sources, an array of photodetectors, or any combination thereof of a collection optical system in the Z direction (optical axis) to move the image plane of the collection optical system and match the image size between a transmission optical system and the collection optical system.
    Type: Application
    Filed: July 9, 2018
    Publication date: January 17, 2019
    Inventors: Lu GAO, Wenjian CAI
  • Publication number: 20190018108
    Abstract: Described are LiDAR systems comprising a transmission optical system and a collection optical system utilizing a common lens or pieces derived from the same lens to reduce or eliminate image mismatch between the transmission optical system and the collection optical system.
    Type: Application
    Filed: July 9, 2018
    Publication date: January 17, 2019
    Inventors: Lu GAO, Wenjian CAI
  • Patent number: 10060884
    Abstract: A method of scanning a sample includes simultaneously forming a plurality of co-linear scans. Each scan is formed by a sweep of a spot by an acousto-optical device (AOD). The co-linear scans are separated by a predetermined spacing. A first plurality of swaths are formed by repeating the simultaneous forming of the plurality of co-linear scans in a direction perpendicular to the co-linear scans. The first plurality of swaths have an inter-swath spacing that is the same as the predetermined spacing. The predetermined spacing can be a scan length or an integral number of scan lengths. A second plurality of swaths can be formed adjacent to the first plurality of swaths. Forming the second plurality of swaths can be performed in an opposite direction to that of the first plurality of swaths or in a same direction. An inspection system can implement this method by including a diffractive optical element (DOE) path after a magnification changer.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: August 28, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Jamie Sullivan, Wenjian Cai, Yevgeniy Churin, Ralph Johnson, Meier Yitzhak Brender, Mark Shi Wang, Rex Runyon, Kai Cao
  • Patent number: 9970883
    Abstract: Disclosed are apparatus and methods for inspecting or measuring a specimen. A system comprises an illumination channel for generating and deflecting a plurality of incident beams to form a plurality of spots that scan across a segmented line comprised of a plurality of scan portions of the specimen. The system also includes one or more detection channels for sensing light emanating from a specimen in response to the incident beams directed towards such specimen and collecting a detected image for each scan portion as each incident beam's spot is scanned over its scan portion. The one or more detection channels include at least one longitudinal side channel for longitudinally collecting a detected image for each scan portion as each incident beam's spot is scanned over its scan portion.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: May 15, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Jamie M. Sullivan, Ralph Johnson, Evegeny Churin, Wenjian Cai, Yong Mo Moon
  • Patent number: 9864173
    Abstract: A spot scanning imaging system with run-time alignment includes a beam scanning device configured to linearly scan a focused beam of illumination across a sample, one or more detectors positioned to receive light from the sample, and a controller communicatively coupled to the beam scanning apparatus, the sample stage, and the one or more detectors. The controller is configured to store a first image, transmit a set of drive signals to at least one of the beam scanning device, the sample stage, or the one or more detectors, compare at least a portion of the second sampling grid to at least a portion of the first sampling grid to determine one or more offset errors, and adjust at least one drive signal in the set of drive signals based on the one or more offset errors such that the second sample grid overlaps the first sample grid.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: January 9, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Jamie M. Sullivan, Wenjian Cai, Kai Cao
  • Patent number: 9645093
    Abstract: An inspection system with selectable apodization includes a selectably configurable apodization device disposed along an optical pathway of an optical system. The apodization device includes one or more apodization elements operatively coupled to one or more actuation stages. The one or more actuation stages are configured to selectably actuate the one or more apodization elements along one or more directions. The inspection system includes a control system communicatively coupled to the one or more actuation stages. The control system is configured to selectably control an actuation state of at the one or more apodization elements so as to apply a selected apodization profile formed with the one or more apodization elements.
    Type: Grant
    Filed: November 2, 2015
    Date of Patent: May 9, 2017
    Assignee: KLA-Tencor Corporation
    Inventors: Jamie M. Sullivan, Gary Janik, Steve Cui, Rex Runyon, Dieter Wilk, Steve Short, Mikhail Haurylau, Qiang Q. Zhang, Grace Hsiu-Ling Chen, Robert M. Danen, Suwipin Martono, Shobhit Verma, Wenjian Cai, Meier Brender
  • Publication number: 20170115232
    Abstract: Disclosed are apparatus and methods for inspecting or measuring a specimen. A system comprises an illumination channel for generating and deflecting a plurality of incident beams to form a plurality of spots that scan across a segmented line comprised of a plurality of scan portions of the specimen. The system also includes one or more detection channels for sensing light emanating from a specimen in response to the incident beams directed towards such specimen and collecting a detected image for each scan portion as each incident beam's spot is scanned over its scan portion. The one or more detection channels include at least one longitudinal side channel for longitudinally collecting a detected image for each scan portion as each incident beam's spot is scanned over its scan portion.
    Type: Application
    Filed: January 5, 2017
    Publication date: April 27, 2017
    Applicant: KLA-Tencor Corporation
    Inventors: Jamie M. Sullivan, Ralph Johnson, Evegeny Churin, Wenjian Cai, Yong Mo Moon
  • Patent number: 9546962
    Abstract: Disclosed are apparatus and methods for inspecting or measuring a specimen. A system comprises an illumination channel for generating and deflecting a plurality of incident beams to form a plurality of spots that scan across a segmented line comprised of a plurality of scan portions of the specimen. The system also includes one or more detection channels for sensing light emanating from a specimen in response to the incident beams directed towards such specimen and collecting a detected image for each scan portion as each incident beam's spot is scanned over its scan portion. The one or more detection channels include at least one longitudinal side channel for longitudinally collecting a detected image for each scan portion as each incident beam's spot is scanned over its scan portion.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: January 17, 2017
    Assignee: KLA-Tencor Corporation
    Inventors: Jamie M. Sullivan, Ralph Johnson, Evegeny Churin, Wenjian Cai, Yong Mo Moon
  • Publication number: 20160313256
    Abstract: A spot scanning imaging system with run-time alignment includes a beam scanning device configured to linearly scan a focused beam of illumination across a sample, one or more detectors positioned to receive light from the sample, and a controller communicatively coupled to the beam scanning apparatus, the sample stage, and the one or more detectors. The controller is configured to store a first image, transmit a set of drive signals to at least one of the beam scanning device, the sample stage, or the one or more detectors, compare at least a portion of the second sampling grid to at least a portion of the first sampling grid to determine one or more offset errors, and adjust at least one drive signal in the set of drive signals based on the one or more offset errors such that the second sample grid overlaps the first sample grid.
    Type: Application
    Filed: January 22, 2016
    Publication date: October 27, 2016
    Inventors: Jamie M. Sullivan, Wenjian Cai, Kai Cao
  • Publication number: 20160290971
    Abstract: A method of scanning a sample includes simultaneously forming a plurality of co-linear scans. Each scan is formed by a sweep of a spot by an acousto-optical device (AOD). The co-linear scans are separated by a predetermined spacing. A first plurality of swaths are formed by repeating the simultaneous forming of the plurality of co-linear scans in a direction perpendicular to the co-linear scans. The first plurality of swaths have an inter-swath spacing that is the same as the predetermined spacing. The predetermined spacing can be a scan length or an integral number of scan lengths. A second plurality of swaths can be formed adjacent to the first plurality of swaths. Forming the second plurality of swaths can be performed in an opposite direction to that of the first plurality of swaths or in a same direction. An inspection system can implement this method by including a diffractive optical element (DOE) path after a magnification changer.
    Type: Application
    Filed: June 16, 2016
    Publication date: October 6, 2016
    Inventors: Jamie Sullivan, Wenjian Cai, Yevgeniy Churin, Ralph Johnson, Meier Yitzhak Brender, Mark Shi Wang, Rex Runyon, Kai Cao
  • Patent number: 9395340
    Abstract: A method of scanning a sample includes simultaneously forming a plurality of co-linear scans. Each scan is formed by a sweep of a spot by an acousto-optical device (AOD). The co-linear scans are separated by a predetermined spacing. A first plurality of swaths are formed by repeating the simultaneous forming of the plurality of co-linear scans in a direction perpendicular to the co-linear scans. The first plurality of swaths have an inter-swath spacing that is the same as the predetermined spacing. A second plurality of swaths can be formed adjacent to the first plurality of swaths. Forming the second plurality of swaths can be performed in an opposite direction to that of the first plurality of swaths or in a same direction. An inspection system can implement this method by including a diffractive optical element (DOE) path after a magnification changer.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 19, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Jamie Sullivan, Wenjian Cai, Yevgeniy Churin, Ralph Johnson, Meier Yitzhak Brender, Mark Shi Wang, Rex Runyon, Kai Cao
  • Publication number: 20160054232
    Abstract: An inspection system with selectable apodization includes a selectably configurable apodization device disposed along an optical pathway of an optical system. The apodization device includes one or more apodization elements operatively coupled to one or more actuation stages. The one or more actuation stages are configured to selectably actuate the one or more apodization elements along one or more directions. The inspection system includes a control system communicatively coupled to the one or more actuation stages. The control system is configured to selectably control an actuation state of at the one or more apodization elements so as to apply a selected apodization profile formed with the one or more apodization elements.
    Type: Application
    Filed: November 2, 2015
    Publication date: February 25, 2016
    Inventors: Jamie M. Sullivan, Gary Janik, Steve Cui, Rex Runyon, Dieter Wilk, Steve Short, Mikhail Haurylau, Qiang Q. Zhang, Grace Hsiu-Ling Chen, Robert M. Danen, Suwipin Martono, Shobhit Verma, Wenjian Cai, Meier Brender
  • Patent number: 9208553
    Abstract: An inspection system comprises a beam generator module for deflecting spots across scan portions of a specimen. The system also includes detection channels for sensing light emanating from a specimen in response to an incident beam directed towards such specimen and generating a detected image for each scan portion. The system comprises a synchronization system comprising clock generator modules for generating timing signals for deflectors of the beam generator module to scan the spots across the scan portions at a specified frequency and each of the detection channels to generate the corresponding detected image at a specified sampling rate. The timing signals are generated based on a common system clock and cause the deflectors to scan the spots and the detection channels to generate a detected image at a synchronized timing so as to minimize jitter between the scan portions in the response image.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: December 8, 2015
    Assignee: KLA-Tencor Corporation
    Inventors: Kai Cao, Dennis G. Emge, Zhiqin Wang, Jamie M. Sullivan, Wenjian Cai, Henrik Nielsen
  • Patent number: 9176069
    Abstract: An inspection system with selectable apodization includes an illumination source configured to illuminate a surface of a sample, a detector configured to detect at least a portion of light emanating from the surface of the sample, the illumination source and the detector being optically coupled via an optical pathway of an optical system, a selectably configurable apodization device disposed along the optical pathway, wherein the apodization device includes one or more apodization elements operatively coupled to one or more actuation stages configured to selectably actuate the one or more apodization elements along one or more directions, and a control system communicatively coupled to the one or more actuation and configured to selectably control apodization of illumination transmitted along the optical pathway by controlling an actuation state of the one or more apodization elements.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: November 3, 2015
    Assignee: KLA-Tencor Corporation
    Inventors: Jamie M. Sullivan, Gary Janik, Steve Cui, Rex Runyon, Dieter Wilk, Steve Short, Mikhail Haurylau, Qiang Q. Zhang, Grace Hsiu-Ling Chen, Robert M. Danen, Suwipin Martono, Shobhit Verma, Wenjian Cai, Meier Brender
  • Publication number: 20150226677
    Abstract: Disclosed are apparatus and methods for inspecting or measuring a specimen. A system comprises an illumination channel for generating and deflecting a plurality of incident beams to form a plurality of spots that scan across a segmented line comprised of a plurality of scan portions of the specimen. The system also includes one or more detection channels for sensing light emanating from a specimen in response to the incident beams directed towards such specimen and collecting a detected image for each scan portion as each incident beam's spot is scanned over its scan portion. The one or more detection channels include at least one longitudinal side channel for longitudinally collecting a detected image for each scan portion as each incident beam's spot is scanned over its scan portion.
    Type: Application
    Filed: February 10, 2015
    Publication date: August 13, 2015
    Applicant: KLA-Tencor Corporation
    Inventors: Jamie M. Sullivan, Ralph Johnson, Evegeny Churin, Wenjian Cai, Yong Mo Moon
  • Publication number: 20150170357
    Abstract: An inspection system comprises a beam generator module for deflecting spots across scan portions of a specimen. The system also includes detection channels for sensing light emanating from a specimen in response to an incident beam directed towards such specimen and generating a detected image for each scan portion. The system comprises a synchronization system comprising clock generator modules for generating timing signals for deflectors of the beam generator module to scan the spots across the scan portions at a specified frequency and each of the detection channels to generate the corresponding detected image at a specified sampling rate. The timing signals are generated based on a common system clock and cause the deflectors to scan the spots and the detection channels to generate a detected image at a synchronized timing so as to minimize jitter between the scan portions in the response image.
    Type: Application
    Filed: February 27, 2015
    Publication date: June 18, 2015
    Applicant: KLA-Tencor Corporation
    Inventors: Kai Cao, Dennis G. Emge, Zhiqin Wang, Jamie M. Sullivan, Wenjian Cai, Henrik Nielsen