Patents by Inventor Wenya Fan

Wenya Fan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150126653
    Abstract: Dopant ink compositions for forming doped regions in semiconductor substrates and methods for fabricating dopant ink compositions are provided. In an exemplary embodiment, a dopant ink composition comprises a dopant compound including at least one alkyl group bonded to a Group 13 element. Further, the dopant ink composition includes a silicon-containing compound.
    Type: Application
    Filed: January 12, 2015
    Publication date: May 7, 2015
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Ligui Zhou, Richard A. Spear, Roger Yu-Kwan Leung, Wenya Fan, Helen X. Xu, Lea M. Metin, Anil Shriram Bhanap
  • Patent number: 8975170
    Abstract: Dopant ink compositions for forming doped regions in semiconductor substrates and methods for fabricating dopant ink compositions are provided. In an exemplary embodiment, a dopant ink composition comprises a dopant compound including at least one alkyl group bonded to a Group 13 element or a Group 15 element. Further, the dopant ink composition includes a silicon-containing compound.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: March 10, 2015
    Assignee: Honeywell International Inc.
    Inventors: Ligui Zhou, Richard A. Spear, Roger Yu-Kwan Leung, Wenya Fan, Helen X. Xu, Lea M. Metin, Anil Shriram Bhanap
  • Publication number: 20130240794
    Abstract: A method for fabricating a boron-comprising ink is provided. The method includes providing an inorganic boron-comprising material, combining the inorganic boron-comprising material with a polar solvent having a boiling point in a range of from about 50° C. to about 250° C., and combining the inorganic boron-comprising material with a spread-minimizing additive that results in a spreading factor of the boron-comprising ink in a range of from about 1.5 to about 6.
    Type: Application
    Filed: May 6, 2013
    Publication date: September 19, 2013
    Applicant: Honeywell International Inc.
    Inventors: Roger Yu-Kwan Leung, De-Ling Zhou, Wenya Fan
  • Patent number: 8518170
    Abstract: Boron-comprising inks for forming boron-doped regions in semiconductor substrates using non-contact printing processes and methods for fabricating such boron-comprising inks are provided. A boron-comprising ink comprises boron from or of a boron-comprising material and a spread-minimizing additive that results in a spreading factor of the boron-comprising ink in a range of from about 1.5 to about 6. The boron-comprising ink has a viscosity in a range of from about 1.5 to about 50 centipoise and, when deposited on a semiconductor substrate, provides a post-anneal sheet resistance in a range of from about 10 to about 100 ohms/square, a post-anneal doping depth in a range of from about 0.1 to about 1 ?m, and a boron concentration in a range of from about 1×1019 to 1×1020 atoms/cm3.
    Type: Grant
    Filed: December 29, 2008
    Date of Patent: August 27, 2013
    Assignee: Honeywell International Inc.
    Inventors: Roger Yu-Kwan Leung, De-Ling Zhou, Wenya Fan
  • Publication number: 20130098266
    Abstract: Dopant ink compositions for forming doped regions in semiconductor substrates and methods for fabricating dopant ink compositions are provided. In an exemplary embodiment, a dopant ink composition comprises a dopant compound including at least one alkyl group bonded to a Group 13 element or a Group 15 element. Further, the dopant ink composition includes a silicon-containing compound.
    Type: Application
    Filed: October 24, 2011
    Publication date: April 25, 2013
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Ligui Zhou, Richard A. Spear, Roger Yu-Kwan Leung, Wenya Fan, Helen X. Xu, Lea M. Metin, Anil Shriram Bhanap
  • Patent number: 8324089
    Abstract: Compositions for forming doped regions in semiconductor substrates, methods for fabricating such compositions, and methods for forming doped regions using such compositions are provided. In one embodiment, a dopant-comprising composition comprises a conductivity-determining type impurity dopant, a silicate carrier, a solvent, and a moisture adsorption-minimizing component. In another embodiment, a dopant-comprising composition comprises a conductivity-determining type impurity dopant, a silicate carrier, a solvent, and a high boiling point material selected from the group consisting of glycol ethers, alcohols, and combinations thereof. The high boiling point material has a boiling point of at least about 150° C.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: December 4, 2012
    Assignee: Honeywell International Inc.
    Inventors: Roger Yu-Kwan Leung, Wenya Fan, Jan Nedbal
  • Patent number: 7951696
    Abstract: Methods for simultaneously forming doped regions of opposite conductivity using non-contact printing processes are provided. In one exemplary embodiment, a method comprises the steps of depositing a first liquid dopant comprising first conductivity-determining type dopant elements overlying a first region of a semiconductor material and depositing a second liquid dopant comprising second conductivity-determining type dopant elements overlying a second region of the semiconductor material. The first conductivity-determining type dopant elements and the second conductivity-determining type dopant elements are of opposite conductivity. At least a portion of the first conductivity-determining type dopant elements and at least a portion of the second conductivity-determining type dopant elements are simultaneously diffused into the first region and into the second region, respectively.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: May 31, 2011
    Assignee: Honeywell International Inc.
    Inventors: Roger Yu-Kwan Leung, Anil Bhanap, Zhe Ding, Nicole Rutherford, Wenya Fan
  • Patent number: 7915181
    Abstract: Methods of repairing voids in a material are described herein that include: a) providing a material having a plurality of reactive silanol groups; b) providing at least one reactive surface modification agent; and c) chemically capping at least some of the plurality of reactive silanol groups with the at least one of the reactive surface modification agents. Methods of carbon restoration in a material are also described that include: a) providing a carbon-deficient material having a plurality of reactive silanol groups; b) providing at least one reactive surface modification agent; and c)chemically capping at least some of the plurality of reactive silanol groups with the at least one of the reactive surface modification agents.
    Type: Grant
    Filed: January 26, 2004
    Date of Patent: March 29, 2011
    Assignee: Honeywell International Inc.
    Inventors: Wenya Fan, Victor Lu, Michael Thomas, Brian Daniels, Tiffany Nguyen, De-Ling Zhou, Ananth Naman, Lei Jin, Anil Bhanap
  • Publication number: 20110021012
    Abstract: Compositions for forming doped regions in semiconductor substrates, methods for fabricating such compositions, and methods for forming doped regions using such compositions are provided. In one embodiment, a dopant-comprising composition comprises a conductivity-determining type impurity dopant, a silicate carrier, a solvent, and a moisture adsorption-minimizing component. In another embodiment, a dopant-comprising composition comprises a conductivity-determining type impurity dopant, a silicate carrier, a solvent, and a high boiling point material selected from the group consisting of glycol ethers, alcohols, and combinations thereof. The high boiling point material has a boiling point of at least about 150° C.
    Type: Application
    Filed: July 20, 2010
    Publication date: January 27, 2011
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Roger Yu-Kwan Leung, Wenya Fan, Jan Nedbal, Lea M. Dankers
  • Publication number: 20100162920
    Abstract: Boron-comprising inks for forming boron-doped regions in semiconductor substrates using non-contact printing processes and methods for fabricating such boron-comprising inks are provided. A boron-comprising ink comprises boron from or of a boron-comprising material and a spread-minimizing additive that results in a spreading factor of the boron-comprising ink in a range of from about 1.5 to about 6. The boron-comprising ink has a viscosity in a range of from about 1.5 to about 50 centipoise and, when deposited on a semiconductor substrate, provides a post-anneal sheet resistance in a range of from about 10 to about 100 ohms/square, a post-anneal doping depth in a range of from about 0.1 to about 1 ?m, and a boron concentration in a range of from about 1×1019 to 1×1020 atoms/cm3.
    Type: Application
    Filed: December 29, 2008
    Publication date: July 1, 2010
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Roger Yu-Kwan Leung, De-Ling Zhou, Wenya Fan
  • Publication number: 20100081264
    Abstract: Methods for simultaneously forming doped regions of opposite conductivity using non-contact printing processes are provided. In one exemplary embodiment, a method comprises the steps of depositing a first liquid dopant comprising first conductivity-determining type dopant elements overlying a first region of a semiconductor material and depositing a second liquid dopant comprising second conductivity-determining type dopant elements overlying a second region of the semiconductor material. The first conductivity-determining type dopant elements and the second conductivity-determining type dopant elements are of opposite conductivity. At least a portion of the first conductivity-determining type dopant elements and at least a portion of the second conductivity-determining type dopant elements are simultaneously diffused into the first region and into the second region, respectively.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 1, 2010
    Applicant: Honeywell International Inc.
    Inventors: Roger Yu-Kwan Leung, Anil Bhanap, Zhe Ding, Nicole Rutherford, Wenya Fan
  • Publication number: 20100035422
    Abstract: Methods for forming doped regions in a semiconductor material that minimize or eliminate vapor diffusion of a dopant element and/or dopant from a deposited dopant and/or into a semiconductor material and methods for fabricating semiconductor devices that minimize or eliminate vapor diffusion of a dopant element and/or dopant from a deposited dopant and/or into a semiconductor material are provided. In one exemplary embodiment, a method for forming doped regions in a semiconductor material comprises depositing a conductivity-determining type dopant comprising a dopant element overlying a first portion of the semiconductor material. A diffusion barrier material is applied such that it overlies a second portion of the semiconductor material. The dopant element of the conductivity-determining type dopant is diffused into the first portion of the semiconductor material.
    Type: Application
    Filed: August 6, 2008
    Publication date: February 11, 2010
    Applicant: HONEYWELL INTERNATIONAL, INC.
    Inventors: Roger Yu-Kwan Leung, De-Ling Zhou, Wenya Fan
  • Publication number: 20090239363
    Abstract: Methods for forming doped regions in semiconductor substrates using non-contact printing processes and dopant-comprising inks for forming such doped regions using non-contact printing processes are provided. In an exemplary embodiment, a method for forming doped regions in a semiconductor substrate is provided. The method comprises providing an ink comprising a conductivity-determining type dopant, applying the ink to the semiconductor substrate using a non-contact printing process, and subjecting the semiconductor substrate to a thermal treatment such that the conductivity-determining type dopant diffuses into the semiconductor substrate.
    Type: Application
    Filed: November 19, 2008
    Publication date: September 24, 2009
    Applicant: HONEYWELL INTERNATIONAL, INC.
    Inventors: Roger Yu-Kwan Leung, De-Ling Zhou, Wenya Fan
  • Publication number: 20090111925
    Abstract: Thermal interface materials comprise at least one silicon-based polymer and are formed from a combination of at least one silicon-based material, at least one catalyst and at least one elasticity promoter. In some embodiments, contemplated materials are also formed utilizing at least one polymerization component. Thermal interface materials are also disclosed that are capable of withstanding temperatures of at least 250 C where the material comprises at least one silicon-based polymer coupled with at least one elasticity promoter. Methods of forming these thermal interface materials comprise providing each of the at least one silicon-based material, at least one catalyst and at least one elasticity promoter, blending the components and optionally including the at least one polymerization component. Contemplated thermal interface materials disclosed are thermally stable, sticky, and elastic, and show a good thermal conductivity and strong adhesion when deposited on the high thermally conductive material.
    Type: Application
    Filed: October 31, 2007
    Publication date: April 30, 2009
    Inventors: Kikue S. Burnham, Wenya Fan
  • Publication number: 20090026924
    Abstract: A method for forming a substantially transparent nanoporous organosilicate film on a substantially transparent substrate, for use in optical lighting devices such as organic light emitting diodes (OLEDs). The method includes first preparing a composition comprising a silicon containing pre-polymer, a porogen, and a catalyst. The composition is coated onto a substrate which is substantially transparent to visible light, forming a film thereon. The film is then gelled by crosslinking and cured by heating, such that the resulting cured film is substantially transparent to visible light. It is preferred that both the substrate and the nanoporous film are at least 98% transparent to visible light. Optical devices which include the resulting structures of this invention exhibit improved light extraction and illuminance where the nanoporous organosilicate film has a low refractive index in the range of 1.05 to 1.4, serving as an impedance matching layer in such devices.
    Type: Application
    Filed: October 31, 2007
    Publication date: January 29, 2009
    Inventors: Roger Y. Leung, De-Ling Zhou, Wenya Fan, Peter A. Smith, Paul G. Apen, Brian J. Daniels, Ananth Naman, Teresa A. Ramos, Robert R. Roth
  • Publication number: 20060141641
    Abstract: Methods of repairing voids in a material are described herein that include: a) providing a material having a plurality of reactive silanol groups; b) providing at least one reactive surface modification agent; and c) chemically capping at least some of the plurality of reactive silanol groups with the at least one of the reactive surface modification agents. Methods of carbon restoration in a material are also described that include: a) providing a carbon-deficient material having a plurality of reactive silanol groups; b) providing at least one reactive surface modification agent; and c)chemically capping at least some of the plurality of reactive silanol groups with the at least one of the reactive surface modification agents.
    Type: Application
    Filed: January 26, 2004
    Publication date: June 29, 2006
    Inventors: Wenya Fan, Victor Lu, Michael Thomas, Brian Daniels, Tiffany Nguyen, De-Ling Zhou, Ananth Naman, Lei Jin, Anil Bhanap
  • Publication number: 20060051929
    Abstract: The present invention relates to semiconductor device fabrication and more specifically to a method and material for forming high density shallow trench isolation structures in integrated circuits having improved electrical properties. A silica dielectric film is formed on a substrate (a) preparing a composition comprising a silicon containing pre-polymer, a metal-ion-free catalyst, and optionally water; (b) coating a substrate with the composition to form a film, (c) crosslinking the composition by first heating the composition in a nitrogen atmosphere at a temperature of from about 750° C. to about 850° C. for from about 30 minutes to about 120 minutes; and thereafter heating the composition in an oxygen atmosphere at a temperature of from about 850° C. to about 1000° C. for from about 30 minutes to about 120 minutes, effective to produce a substantially crack-free, and substantially void-free silica dielectric film having a density of from about 1.8 to about 2.3 g/ml, a dielectric constant of about 4.
    Type: Application
    Filed: September 3, 2004
    Publication date: March 9, 2006
    Inventors: Lei Jin, Victor Lu, Wenya Fan, Paul Apen
  • Publication number: 20050173803
    Abstract: The invention relates to the production of multilayered dielectric structures and to semiconductor devices and integrated circuits comprising these structures. The structures of the invention are prepared by adhering a porous dielectric layer to a substantially nonporous capping layer via an intermediate adhesion promoting dielectric layer. A multilayered dielectric structure is prepared which has a porous dielectric layer which has a porosity of about 10% or more; b) an adhesion promoting dielectric layer on the porous dielectric layer which has a porosity of about 10% or less; and a substantially nonporous capping layer on the adhesion promoting dielectric layer.
    Type: Application
    Filed: September 20, 2002
    Publication date: August 11, 2005
    Inventors: Victor Lu, Roger Leung, Wenya Fan, Ananth Naman, De-Ling Zhou
  • Patent number: 6214746
    Abstract: Nanoporous low dielectric constant materials are fabricated from a first reagent and a second reagent. The reagents are mixed to give a reagent mixture and a polymeric structure is formed from the reagent mixture. Nanosized voids are created by removing at least in part the second reagent from the polymeric structure by a method other than thermolysis, and other than evaporation.
    Type: Grant
    Filed: October 18, 1999
    Date of Patent: April 10, 2001
    Assignee: Honeywell International Inc.
    Inventors: Roger Leung, Wenya Fan, John Silkonia, Hui-Jung Wu