Patents by Inventor Wesley R. Mariott

Wesley R. Mariott has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11518825
    Abstract: Embodiments of the present disclosure are directed towards catalyst formulations including a metallocene and a stearic compound selected from bis 2-hydroxyethyl stearyl amine, aluminum distearate, and combinations thereof, where the metallocene is represented by the following formula: (Formula (I)) wherein each n-PR is n-propyl, and each X is independently CH3, Cl, or F.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: December 6, 2022
    Assignee: Univation Technologies, LLC
    Inventors: Wesley R. Mariott, John F. Szul, Haiqing Peng, James M. Farley, Bruce J. Savatsky, Brandon C. Locklear
  • Patent number: 11485802
    Abstract: A spray-dried zirconocene catalyst system comprising a zirconocene catalyst and a hydrophobic fumed silica, which supports the zirconocene catalyst. A spray-drying method of making same. Polyolefins; methods of making and using same; and articles containing same.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: November 1, 2022
    Assignee: Dow Global Technologies LLC
    Inventors: Wesley R. Mariott, Roger L. Kuhlman, Phuong A. Cao, C. Dale Lester, Chuan He, Swapnil B. Chandak, Pradeep Jain, John F. Szul
  • Patent number: 11459413
    Abstract: Polymerization process control methods for making polyethylene are provided. The process control methods include performing a polymerization reaction in a polymerization reactor to produce the polyethylene, where ethylene, and optionally one or more comonomers, in the polymerization reaction is catalyzed by an electron donor-free Ziegler-Natta catalyst and an alkyl aluminum co-catalyst. A melt flow ratio (I21/I2) of the polyethylene removed from the polymerization reactor is measured and an amount of long chain branching (LCB) of the polyethylene from the polymerization reactor is controlled by adjusting a weight concentration of the alkyl aluminum co-catalyst present in the polymerization reactor.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: October 4, 2022
    Assignee: Univation Technologies, LLC
    Inventors: Wesley R. Mariott, Kevin J. Cann, John H. Moorhouse, Mark G. Goode, Thomas Oswald
  • Patent number: 11325927
    Abstract: An activated, titanium-based, spray-dried Ziegler-Natta catalyst system containing a titanium-based Ziegler-Natta catalyst, a carrier material, and an activator mixture comprising an effective amount of an activator mixture comprising triethylaluminum and diethylaluminum chloride for producing a substantially uniform comonomer composition distribution. Also, polyolefins; methods of making and using same; and articles containing same.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: May 10, 2022
    Assignee: UNIVATION TECHNOLOGIES, LLC
    Inventors: Wesley R. Mariott, C. Dale Lester, Nitin Borse
  • Patent number: 11325928
    Abstract: A modified spray-dried Ziegler-Natta (pro)catalyst system comprising a Ziegler-Natta (pro)catalyst, a carrier material, and a tetrahydrofuran/ethanol modifier; polyolefins; methods of making and using same; and articles containing same.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: May 10, 2022
    Inventors: Wesley R. Mariott, C. Dale Lester, Phuong A. Cao, Michael D. Awe, Nitin Borse
  • Patent number: 11248066
    Abstract: Methods of making spray-dried Ziegler-Natta (pro)catalyst systems containing titanium Ziegler-Natta (pro)catalysts, a hydrophobic silica carrier material, and tetrahydrofuran. The spray-dried Ziegler-Natta (pro)catalyst systems made by the method. Methods of polymerizing olefin (co)monomer(s) with the spray-dried Ziegler-Natta catalyst system to make polyolefin polymers, and the polyolefin polymers made thereby.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: February 15, 2022
    Assignee: Univation Technologies, LLC
    Inventors: Ian M. Munro, Wesley R. Mariott, C. Dale Lester, Nitin Borse, Michael D. Awe, Phuong A. Cao, Jesse C. Beilhart
  • Patent number: 11193008
    Abstract: A method for increasing the melt strength of a polyolefin polymer composition is provided. The method includes mixing a first polyolefin composition derived from at least one olefin polymerization catalyst (a) and at least one olefin polymerization catalyst (b) with a second polyolefin composition derived from the at least one olefin polymerization catalyst (b) or from at least one olefin polymerization catalyst (c), and obtaining the polyolefin polymer composition.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: December 7, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Ching-Tai Lue, Mark K. Davis, Wesley R. Mariott, Daniel P. Zilker, Phuong A. Cao
  • Patent number: 11180582
    Abstract: The present disclosure provides a method for improving the activity of Ziegler-Natta (ZN) catalysts. The method includes forming a modified precursor composition of a ZN catalyst by providing a precursor composition of the ZN catalyst for treatment with an aluminum alkyl compound in a liquid organic solvent. The precursor composition of the ZN catalyst includes at least one titanium compound. The at least one titanium compound in the precursor composition is treated with the aluminum alkyl compound in the liquid organic solvent, where the aluminum alkyl compound converts the at least one titanium compound in the precursor composition into a modified state of the ZN catalyst. At least a portion of the aluminum alkyl compound not consumed in converting the at least one titanium compound in the precursor composition into the modified state of the ZN catalyst and reaction by-product compounds in the liquid organic solvent are removed to form the modified precursor composition of the ZN catalyst.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: November 23, 2021
    Assignee: Univation Technologies, LLC
    Inventors: Kevin J. Cann, Michael D. Awe, Wesley R. Mariott
  • Publication number: 20210284768
    Abstract: Polymerization process control methods for making polyethylene are provided. The process control methods include performing a polymerization reaction in a polymerization reactor to produce the polyethylene, where ethylene, and optionally one or more comonomers, in the polymerization reaction is catalyzed by an electron donor-free Ziegler-Natta catalyst and an alkyl aluminum co-catalyst. A melt flow ratio (I21/I2) of the polyethylene removed from the polymerization reactor is measured and an amount of long chain branching (LCB) of the polyethylene from the polymerization reactor is controlled by adjusting a weight concentration of the alkyl aluminum co-catalyst present in the polymerization reactor.
    Type: Application
    Filed: September 26, 2017
    Publication date: September 16, 2021
    Applicant: Univation Technologies, LLC
    Inventors: Wesley R. Mariott, Kevin J. Cann, John H. Moorhouse, Mark G. Goode, Thomas Oswald
  • Publication number: 20210230317
    Abstract: Methods of making spray-dried Ziegler-Natta (pro)catalyst systems containing titanium Ziegler-Natta (pro)catalysts, a hydrophobic silica carrier material, and tetrahydrofuran. The spray-dried Ziegler-Natta (pro)catalyst systems made by the method. Methods of polymerizing olefin (co)monomer(s) with the spray-dried Ziegler-Natta catalyst system to make polyolefin polymers, and the polyolefin polymers made thereby.
    Type: Application
    Filed: June 7, 2019
    Publication date: July 29, 2021
    Inventors: Ian M. Munro, Wesley R. Mariott, C. Dale Lester, Nitin Borse, Michael D. Awe, Phuong A. Cao, Jesse C. Beilhart
  • Publication number: 20210189024
    Abstract: The present disclosure provides a method for improving the activity of Ziegler-Natta (ZN) catalysts. The method includes forming a modified precursor composition of a ZN catalyst by providing a precursor composition of the ZN catalyst for treatment with an aluminum alkyl compound in a liquid organic solvent. The precursor composition of the ZN catalyst includes at least one titanium compound. The at least one titanium compound in the precursor composition is treated with the aluminum alkyl compound in the liquid organic solvent, where the aluminum alkyl compound converts the at least one titanium compound in the precursor composition into a modified state of the ZN catalyst. At least a portion of the aluminum alkyl compound not consumed in converting the at least one titanium compound in the precursor composition into the modified state of the ZN catalyst and reaction by-product compounds in the liquid organic solvent are removed to form the modified precursor composition of the ZN catalyst.
    Type: Application
    Filed: February 28, 2017
    Publication date: June 24, 2021
    Applicant: Univation Technologies, LLC
    Inventors: Kevin J. Cann, Michael D. Awe, Wesley R. Mariott
  • Publication number: 20210115168
    Abstract: Embodiments of the present disclosure are directed towards catalyst formulations including a metallocene and a stearic compound selected from bis 2-hydroxyethyl stearyl amine, aluminum distearate, and combinations thereof, where the metallocene is represented by the following formula: (Formula (I)) wherein each n-PR is n-propyl, and each X is independently CH3, Cl, or F.
    Type: Application
    Filed: March 4, 2019
    Publication date: April 22, 2021
    Applicant: Univation Technologies, LLC
    Inventors: Wesley R. MARIOTT, John F. SZUL, Haiqing PENG, James M. FARLEY, Bruce J. SAVATSKY, Brandon C. LOCKLEAR
  • Publication number: 20210032377
    Abstract: A spray-dried zirconocene catalyst system comprising a zirconocene catalyst and a hydrophobic fumed silica, which supports the zirconocene catalyst. A spray-drying method of making same. Polyolefins; methods of making and using same; and articles containing same.
    Type: Application
    Filed: March 22, 2019
    Publication date: February 4, 2021
    Inventors: Wesley R. Mariott, Roger L. Kuhlman, Phuong A. Cao, C. Dale Lester, Chuan He, Swapnil B. Chandak, Pradeep Jain, John F. Szul
  • Publication number: 20200369693
    Abstract: A modified spray-dried Ziegler-Natta (pro)catalyst system comprising a Ziegler-Natta (pro)catalyst, a carrier material, and a tetrahydrofuran/ethanol modifier; polyolefins; methods of making and using same; and articles containing same.
    Type: Application
    Filed: December 3, 2018
    Publication date: November 26, 2020
    Inventors: Wesley R. Mariott, C. Dale Lester, Phuong A. Cao, Michael D Awe, Nitin Borse
  • Patent number: 10676589
    Abstract: Catalyst systems and methods for making and using the same are provided. The catalyst system can include a catalyst support, wherein the catalyst support has an average particle size of about 2 microns to about 200 microns. Nanoparticles are adhered to the catalyst support, wherein the nanoparticles have an average particle size of about 2 to about 200 nanometers. A catalyst is supported on the catalyst support.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: June 9, 2020
    Assignee: Univation Technologies, LLC
    Inventors: Yuanqiao Rao, Ping Cai, Kevin J. Cann, F. David Hussein, Wesley R. Mariott, Phuong A. Cao
  • Patent number: 10676588
    Abstract: Catalyst systems and methods for making and using the same are provided. The catalyst system can include a catalyst support, wherein the catalyst support has an average particle size of about 2 microns to about 200 microns. Nanoparticles are adhered to the catalyst support, wherein the nanoparticles have an average particle size of about 2 to about 200 nanometers. A catalyst is supported on the catalyst support.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: June 9, 2020
    Assignee: Univation Technologies, LLC
    Inventors: Yuanqiao Rao, Ping Cai, Kevin J. Cann, F. David Hussein, Wesley R. Mariott, Phuong A. Cao
  • Patent number: 10597509
    Abstract: Catalyst systems and methods for making and using the same are provided. The catalyst system can include a catalyst support, wherein the catalyst support has an average particle size of about 2 microns to about 200 microns. Nanoparticles are adhered to the catalyst support, wherein the nanoparticles have an average particle size of about 2 to about 200 nanometers. A catalyst is supported on the catalyst support.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: March 24, 2020
    Assignee: Univation Technologies, LLC
    Inventors: Yuanqiao Rao, Ping Cai, Kevin J. Cann, F. David Hussein, Wesley R. Mariott, Phuong A. Cao
  • Publication number: 20200056026
    Abstract: A method for increasing the melt strength of a polyolefin polymer composition is provided. The method includes mixing a first polyolefin composition derived from at least one olefin polymerization catalyst (a) and at least one olefin polymerization catalyst (b) with a second polyolefin composition derived from the at least one olefin polymerization catalyst (b) or from at least one olefin polymerization catalyst (c), and obtaining the polyolefin polymer composition.
    Type: Application
    Filed: March 23, 2018
    Publication date: February 20, 2020
    Inventors: Ching-Tai Lue, Mark K. Davis, Wesley R. Mariott, Daniel P, Ziiker, Pbuong A. Cao
  • Patent number: 10513572
    Abstract: Polymerization process control methods for making polyethylene are provided. The process control methods include performing a polymerization reaction in a polymerization reactor to produce the polyethylene, where ethylene, and optionally one or more comonomers, in the polymerization reaction is catalyzed by an electron donor-free Ziegler-Natta catalyst and an alkyl aluminum co-catalyst. A melt flow ratio (I21/I2) of the polyethylene removed from the polymerization reactor is measured and an amount of long chain branching (LCB) of the polyethylene from the polymerization reactor is controlled by adjusting a weight concentration of the alkyl aluminum co-catalyst present in the polymerization reactor.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: December 24, 2019
    Assignee: Univation Technologies, LLC
    Inventors: Wesley R. Mariott, Kevin J. Cann, John H. Moorhouse, Mark G. Goode, Thomas Oswald
  • Publication number: 20190218364
    Abstract: Catalyst systems and methods for making and using the same are provided. The catalyst system can include a catalyst support, wherein the catalyst support has an average particle size of about 2 microns to about 200 microns. Nanoparticles are adhered to the catalyst support, wherein the nanoparticles have an average particle size of about 2 to about 200 nanometers. A catalyst is supported on the catalyst support.
    Type: Application
    Filed: March 19, 2019
    Publication date: July 18, 2019
    Applicant: Univation Technologies, LLC
    Inventors: Yuanqiao Rao, Ping Cai, Kevin J. Cann, F. David Hussein, Wesley R. Mariott, Phuong A. Cao