Patents by Inventor Wilaiwan Chouyyok

Wilaiwan Chouyyok has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230197429
    Abstract: A unique fiber core sampler composition, related systems, and techniques for designing, making, and using the same are described. The sampler is used to interface with existing field instrumentation, such as Ion Mobility Spectrometer (IMS) equipment. Desired sampler characteristics include its: stiffness/flexibility; thermal mass and conductivity; specific heat; trace substance collection/release dependability, sensitivity and repeatability; thickness; reusability; durability; stability for thermal cleaning; and the like. In one form the sampler has a glass fiber core with a thickness less than 0.3 millimeter that is coated with a polymer including one or more of: polymeric organofluorine, polyimide, polyamide, PolyBenzImidazole (PBI), PolyDiMethylSiloxane (PDMS), sulfonated tetrafluoroethylene (PFSA) and Poly(2,6-diphenyl-p-phenylene Oxide) (PPPO).
    Type: Application
    Filed: February 7, 2023
    Publication date: June 22, 2023
    Applicant: Battelle Memorial Institute
    Inventors: Raymond S. Addleman, Xiaohong Shari Li, Wilaiwan Chouyyok, David A. Atkinson
  • Patent number: 11581176
    Abstract: A unique fiber core sampler composition, related systems, and techniques for designing, making, and using the same are described. The sampler is used to interface with existing field instrumentation, such as Ion Mobility Spectrometer (IMS) equipment. Desired sampler characteristics include its: stiffness/flexibility; thermal mass and conductivity; specific heat; trace substance collection/release dependability, sensitivity and repeatability; thickness; reusability; durability; stability for thermal cleaning; and the like. In one form the sampler has a glass fiber core with a thickness less than 0.3 millimeter that is coated with a polymer including one or more of: polymeric organofluorine, polyimide, polyamide, PolyBenzlmidazole (PBI), PolyDiMethylSiloxane (PDMS), sulfonated tetrafluoroethylene (PFSA) and Poly(2,6-diphenyl-p-phenylene Oxide) (PPPO).
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: February 14, 2023
    Assignee: Battelle Memorial Institute
    Inventors: Raymond S. Addleman, Xiaohong Shari Li, Wilaiwan Chouyyok, David A. Atkinson
  • Publication number: 20200129900
    Abstract: A novel integrated filter device for the concurrent capture, filtration or separation of particle, chemicals, vapors and or/gasses from liquid or solid flows. The device has a filtration macrostructure substrate and a thin film coating over the macrostructure substrate which allows for compact and efficient capture, filtration and separations. Device may serve as a platform for chemical reactions. The device minimized problems associated with traditional filters, chemical sorbents or reactors and provided for enhanced collection and analysis of target materials. The methodology for construction also allows for modular assembly in various arrangements including a stacked configuration. The devices may be used collaboratively and cooperatively with other collection and separation technologies.
    Type: Application
    Filed: February 15, 2018
    Publication date: April 30, 2020
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Raymond S. Addleman, Wilaiwan Chouyyok, Xiaohong S. Li, John T. Bays, Anthony D. Cinson
  • Patent number: 10533968
    Abstract: A unique fiber core sampler composition, related systems, and techniques for designing, making, and using the same are described. The sampler is used to interface with existing field instrumentation, such as Ion Mobility Spectrometer (IMS) equipment. Desired sampler characteristics include its: stiffness/flexibility; thermal mass and conductivity; specific heat; trace substance collection/release dependability, sensitivity and repeatability; thickness; reusability; durability; stability for thermal cleaning; and the like. In one form the sampler has a glass fiber core with a thickness less than 0.3 millimeter that is coated with a polymer including one or more of: polymeric organofluorine, polyimide, polyamide, PolyBenzImidazole (PBI), PolyDiMethylSiloxane (PDMS), sulfonated tetrafluoroethylene (PFSA) and Poly(2,6-diphenyl-p-phenylene Oxide) (PPPO).
    Type: Grant
    Filed: January 24, 2019
    Date of Patent: January 14, 2020
    Assignee: Battelle Memorial Institute
    Inventors: Raymond S. Addleman, Xiaohong Shari Li, Wilaiwan Chouyyok, David A. Atkinson
  • Publication number: 20200013602
    Abstract: A unique fiber core sampler composition, related systems, and techniques for designing, making, and using the same are described. The sampler is used to interface with existing field instrumentation, such as Ion Mobility Spectrometer (IMS) equipment. Desired sampler characteristics include its: stiffness/flexibility; thermal mass and conductivity; specific heat; trace substance collection/release dependability, sensitivity and repeatability; thickness; reusability; durability; stability for thermal cleaning; and the like. In one form the sampler has a glass fiber core with a thickness less than 0.3 millimeter that is coated with a polymer including one or more of: polymeric organofluorine, polyimide, polyamide, PolyBenzlmidazole (PBI), PolyDiMethylSiloxane (PDMS), sulfonated tetrafluoroethylene (PFSA) and Poly(2,6-diphenyl-p-phenylene Oxide) (PPPO).
    Type: Application
    Filed: August 26, 2019
    Publication date: January 9, 2020
    Applicant: Battelle Memorial Institute
    Inventors: Raymond S. Addleman, Xiaohong Shari Li, Wilaiwan Chouyyok, David A. Atkinson
  • Patent number: 10453664
    Abstract: A unique fiber core sampler composition, related systems, and techniques for designing, making, and using the same are described. The sampler is used to interface with existing field instrumentation, such as Ion Mobility Spectrometer (IMS) equipment. Desired sampler characteristics include its: stiffness/flexibility; thermal mass and conductivity; specific heat; trace substance collection/release dependability, sensitivity and repeatability; thickness; reusability; durability; stability for thermal cleaning; and the like. In one form the sampler has a glass fiber core with a thickness less than 0.3 millimeter that is coated with a polymer including one or more of: polymeric organofluorine, polyimide, polyamide, PolyBenzlmidazole (PBI), PolyDiMethylSiloxane (PDMS), sulfonated tetrafluoroethylene (PFSA) and Poly(2,6-diphenyl-p-phenylene Oxide) (PPPO).
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: October 22, 2019
    Assignee: Battelle Memorial Institute
    Inventors: Raymond S Addleman, Xiaohong Shari Li, Wilaiwan Chouyyok, David A Atkinson
  • Publication number: 20190271669
    Abstract: Methods, systems, and non-transitory computer-readable storage media having programs are described for monitoring an ultrasonic bonding operation via acoustic and/or vibration measurements and analyzing the measurements in order to predict and/or characterize the quality of a weld resulting from the bonding operation. The measurements are non-destructively acquired and the characterization is expressed as a bond quality index value.
    Type: Application
    Filed: February 28, 2019
    Publication date: September 5, 2019
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Jonathan D. Suter, Curtis J. Larimer, Kayte M. Denslow, Michael S. Hughes, Wilaiwan Chouyyok, Francesco Luzi
  • Publication number: 20190178842
    Abstract: A unique fiber core sampler composition, related systems, and techniques for designing, making, and using the same are described. The sampler is used to interface with existing field instrumentation, such as Ion Mobility Spectrometer (IMS) equipment. Desired sampler characteristics include its: stiffness/flexibility; thermal mass and conductivity; specific heat; trace substance collection/release dependability, sensitivity and repeatability; thickness; reusability; durability; stability for thermal cleaning; and the like. In one form the sampler has a glass fiber core with a thickness less than 0.3 millimeter that is coated with a polymer including one or more of: polymeric organofluorine, polyimide, polyamide, PolyBenzImidazole (PBI), PolyDiMethylSiloxane (PDMS), sulfonated tetrafluoroethylene (PFSA) and Poly(2,6-diphenyl-p-phenylene Oxide) (PPPO).
    Type: Application
    Filed: January 24, 2019
    Publication date: June 13, 2019
    Applicant: Battelle Memorial Institute
    Inventors: Raymond S. Addleman, Xiaohong Shari Li, Wilaiwan Chouyyok, David A. Atkinson
  • Patent number: 10315185
    Abstract: Disclosed herein is a material comprising a functionalized solid support surface, wherein the functionalization comprises a thioalkylene linker bound to the support surface and the thioalkylene linker is coupled to a moiety derived from a ligand, wherein the ligand includes a terminal alkenyl and at least one first functional group configured to bind to at least one predetermined target species.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: June 11, 2019
    Assignees: University of Oregon, Battelle Memorial Institute
    Inventors: Kara Nell, Darren W. Johnson, Jonathan Pittman, Wilaiwan Chouyyok, Raymond Shane Addleman, Marvin G. Warner
  • Patent number: 10254248
    Abstract: A unique fiber core sampler composition, related systems, and techniques for designing, making, and using the same are described. The sampler is used to interface with existing field instrumentation, such as Ion Mobility Spectrometer (IMS) equipment. Desired sampler characteristics include its: stiffness/flexibility; thermal mass and conductivity; specific heat; trace substance collection/release dependability, sensitivity and repeatability; thickness; reusability; durability; stability for thermal cleaning; and the like. In one form the sampler has a glass fiber core with a thickness less than 0.3 millimeter that is coated with a polymer including one or more of: polymeric organofluorine, polyimide, polyamide, PolyBenzlmidazole (PBI), PolyDiMethylSiloxane (PDMS), sulfonated tetrafluoroethylene (PFSA) and Poly(2,6-diphenyl-p-phenylene Oxide) (PPPO).
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: April 9, 2019
    Assignee: Battelle Memorial Institute
    Inventors: Raymond S Addleman, Xiaohong Shari Li, Wilaiwan Chouyyok, David A Atkinson
  • Publication number: 20180015442
    Abstract: Disclosed herein is a material comprising a functionalized solid support surface, wherein the functionalization comprises a thioalkylene linker bound to the support surface and the thioalkylene linker is coupled to a moiety derived from a ligand, wherein the ligand includes a terminal alkenyl and at least one first functional group configured to bind to at least one predetermined target species.
    Type: Application
    Filed: July 14, 2017
    Publication date: January 18, 2018
    Applicants: University of Oregon, Battelle Memorial Institute
    Inventors: Kara Nell, Darren W. Johnson, Jonathan Pittman, Wilaiwan Chouyyok, Raymond Shane Addleman, Marvin G. Warner
  • Publication number: 20160313218
    Abstract: A unique fiber core sampler composition, related systems, and techniques for designing, making, and using the same are described. The sampler is used to interface with existing field instrumentation, such as Ion Mobility Spectrometer (IMS) equipment. Desired sampler characteristics include its: stiffness/flexibility; thermal mass and conductivity; specific heat; trace substance collection/release dependability, sensitivity and repeatability; thickness; reusability; durability; stability for thermal cleaning; and the like. In one form the sampler has a glass fiber core with a thickness less than 0.3 millimeter that is coated with a polymer including one or more of: polymeric organofluorine, polyimide, polyamide, PolyBenzlmidazole (PBI), PolyDiMethylSiloxane (PDMS), sulfonated tetrafluoroethylene (PFSA) and Poly(2,6-diphenyl-p-phenylene Oxide) (PPPO).
    Type: Application
    Filed: April 21, 2015
    Publication date: October 27, 2016
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Raymond S. Addleman, Xiaohong Shari Li, Wilaiwan Chouyyok, David A. Atkinson
  • Publication number: 20160314953
    Abstract: A unique fiber core sampler composition, related systems, and techniques for designing, making, and using the same are described. The sampler is used to interface with existing field instrumentation, such as Ion Mobility Spectrometer (IMS) equipment. Desired sampler characteristics include its: stiffness/flexibility; thermal mass and conductivity; specific heat; trace substance collection/release dependability, sensitivity and repeatability; thickness; reusability; durability; stability for thermal cleaning; and the like. In one form the sampler has a glass fiber core with a thickness less than 0.3 millimeter that is coated with a polymer including one or more of: polymeric organofluorine, polyimide, polyamide, PolyBenzlmidazole (PBI), PolyDiMethylSiloxane (PDMS), sulfonated tetrafluoroethylene (PFSA) and Poly(2,6-diphenyl-p-phenylene Oxide) (PPPO).
    Type: Application
    Filed: April 21, 2015
    Publication date: October 27, 2016
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Raymond S. Addleman, Xiaohong Shari Li, Wilaiwan Chouyyok, David A. Atkinson
  • Patent number: 9370749
    Abstract: A method and porous multi-component material for the capture, separation or chemical reaction of a species of interest is disclosed. The porous multi-component material includes a substrate and a composite thin film. The composite thin film is formed by combining a porous polymer with a nanostructured material. The nanostructured material may include a surface chemistry for the capture of chemicals or particles. The composite thin film is coupled to the support or device surface. The method and material provides a simple, fast, and chemically and physically benign way to integrate nanostructured materials into devices while preserving their chemical activity.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: June 21, 2016
    Assignee: BATTELLE MEMORIAL INSTITUTE
    Inventors: Raymond S. Addleman, Wilaiwan Chouyyok, Xiaohong S. Li, Anthony D. Cinson, Aleksandr A. Gerasimenko
  • Patent number: 9259708
    Abstract: A method and device for enhanced capture of target analytes is disclosed. This invention relates to collection of chemicals for separations and analysis. More specifically, this invention relates to a solid phase microextraction (SPME) device having better capability for chemical collection and analysis. This includes better physical stability, capacity for chemical collection, flexible surface chemistry and high affinity for target analyte.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: February 16, 2016
    Assignee: BATTELLE MEMORIAL INSTITUTE
    Inventors: Raymond S. Addleman, Xiaohong Shari Li, Wilaiwan Chouyyok, Anthony D. Cinson, John T. Bays, Krys Wallace
  • Patent number: 8943910
    Abstract: An enhanced swipe sampler and method of making are described. The swipe sampler is made of a fabric containing selected glass, metal oxide, and/or oxide-coated glass or metal fibers. Fibers are modified with silane ligands that are directly attached to the surface of the fibers to functionalize the sampling surface of the fabric. The swipe sampler collects various target analytes including explosives and other threat agents on the surface of the sampler.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: February 3, 2015
    Assignee: Battelle Memorial Institute
    Inventors: Raymond S. Addleman, David A. Atkinson, John T. Bays, Wilaiwan Chouyyok, Anthony D. Cinson, Robert G. Ewing, Aleksandr A. Gerasimenko
  • Publication number: 20140322518
    Abstract: A method and porous multi-component material for the capture, separation or chemical reaction of a species of interest is disclosed. The porous multi-component material includes a substrate and a composite thin film. The composite thin film is formed by combining a porous polymer with a nanostructured material. The nanostructured material may include a surface chemistry for the capture of chemicals or particles. The composite thin film is coupled to the support or device surface. The method and material provides a simple, fast, and chemically and physically benign way to integrate nanostructured materials into devices while preserving their chemical activity.
    Type: Application
    Filed: April 24, 2013
    Publication date: October 30, 2014
    Inventors: Raymond S. Addleman, Wilaiwan Chouyyok, Xiaohong S. Li, Anthony D. Cinson, Aleksandr A. Gerasimenko
  • Publication number: 20140017805
    Abstract: A method and device for enhanced capture of target analytes is disclosed. This invention relates to collection of chemicals for separations and analysis. More specifically, this invention relates to a solid phase microextraction (SPME) device having better capability for chemical collection and analysis. This includes better physical stability, capacity for chemical collection, flexible surface chemistry and high affinity for target analyte.
    Type: Application
    Filed: July 11, 2012
    Publication date: January 16, 2014
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Raymond S. Addleman, Xiaohong Shari Li, Wilaiwan Chouyyok, Anthony D. Cinson, John T. Bays, Krys Wallace
  • Publication number: 20130276555
    Abstract: An enhanced swipe sampler and method of making are described. The swipe sampler is made of a fabric containing selected glass, metal oxide, and/or oxide-coated glass or metal fibers. Fibers are modified with silane ligands that are directly attached to the surface of the fibers to functionalize the sampling surface of the fabric. The swipe sampler collects various target analytes including explosives and other threat agents on the surface of the sampler.
    Type: Application
    Filed: April 18, 2012
    Publication date: October 24, 2013
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Raymond S. Addleman, David A. Atkinson, John T. Bays, Wilaiwan Chouyyok, Anthony D. Cinson, Robert G. Ewing, Aleksandr A. Gerasimenko