Patents by Inventor Wilhelm Heuberger

Wilhelm Heuberger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6204560
    Abstract: As will be described in more detail hereinafter, there is disclosed herein a titanium nitride diffusion barrier layer and associated method for use in non-silicon semiconductor technologies. In one aspect of the invention, a semiconductor device includes a non-silicon active surface. The improvement comprises an ohmic contact serving to form an external electrical connection to the non-silicon active surface in which the ohmic contact includes at least one layer consisting essentially of titanium nitride. In another aspect of the invention, a semiconductor ridge waveguide laser is disclosed which includes a semiconductor substrate and an active layer disposed on the substrate. A cladding layer is supported partially on the substrate and partially on the active layer. The cladding layer includes a ridge portion disposed in a confronting relationship with the active region.
    Type: Grant
    Filed: April 20, 1998
    Date of Patent: March 20, 2001
    Assignee: Uniphase Laser Enterprise AG
    Inventors: Andreas Daetwyler, Urs Deutsch, Christoph Harder, Wilhelm Heuberger, Eberhard Latta, Abram Jakubowicz, Albertus Oosenbrug, William Patrick, Peter Roentgen, Erica Williams
  • Patent number: 5153890
    Abstract: A semiconductor device such as a laser diode grown on a structured substrate surface having horizontal regions and adjacent inclined sidewall surfaces. The horizontal regions are of standard orientation while the inclined surfaces are misoriented. The layers forming the device are grown on top of a structured surface, with at least the active layer of the semiconductor material assuming an ordered state which depends on the orientation of the substrate surface. The center section of the active layer is deposited on top of a horizontal region. This section is in the ordered state and has a lower bandgap energy than the terminating sections which are grown on the inclined regions and which exhibit a wider bandgap. The active layer can be terminated in either lateral direction with wider bandgap materials so that buried devices can be obtained that provide strongly confined and non-absorbing mirrors.
    Type: Grant
    Filed: October 24, 1991
    Date of Patent: October 6, 1992
    Assignee: International Business Machines Corporation
    Inventors: Gian-Luca Bona, Wilhelm Heuberger, Peter Roentgen, Peter Unger
  • Patent number: 5059552
    Abstract: A process for forming the ridge structure of a self-aligned InP-system, double heterostructure (DH) laser, particularly useful for long wavelength devices as required for signal transmission systems includes a thin Si.sub.3 N.sub.4 layer (41) inserted between a photoresist mask (42) that defines the ridge structure, and a contact layer (35). Using a Si.sub.3 N.sub.4 layer (4) deposited at a high plasma excitation frequency (RF) for adhesion promotion, and a low frequency deposited (LF) Si.sub.3 N.sub.4 layer (43) for device embedding, provides for the etch selectively required in the process step that is used to expose the contact layer to ohmic contact metallization deposition.
    Type: Grant
    Filed: March 15, 1991
    Date of Patent: October 22, 1991
    Assignee: International Business Machines Corporation
    Inventors: Christoph S. Harder, Wilhelm Heuberger, Peter D. Hoh, David J. Webb
  • Patent number: 5037776
    Abstract: A method, and devices produced therewith, for the epitaxial growth of sub-micron semiconductor structures with at least one crystal plane-dependently grown, buried active layer (24) consisting of a III-V compound. The active layer (24) and adjacent embedding layers (23, 25) form a heterostructure produced in a one-step growth process not requiring removal of the sample from the growth chamber in between layer depositions. The layers of the structure are grown on a semiconductor substrate (21) having a structured surface exposing regions of different crystal orientation providing growth and no-growth-planes for the selective growth process. The method allows the production of multiple, closely spaced active layers and of layers consisting of adjoining sections having different physical properties.
    Type: Grant
    Filed: September 14, 1989
    Date of Patent: August 6, 1991
    Assignee: International Business Machines Corporation
    Inventors: Yvan Galeuchet, Volker Graf, Wilhelm Heuberger, Peter Roentgen