Patents by Inventor Wilhelm K. Wojsznis

Wilhelm K. Wojsznis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11487252
    Abstract: A method of controlling and managing a process control system having a plurality of control loops includes implementing a plurality of control routines to control operation of the plurality of control loops, respectively, wherein the control routines may include at least one non-adaptive control routine. The method then collects operating condition data in connection with the operation of each control loop, and identifies a respective process model for each control loop from the respective operating condition data collected for each control loop. The identification of the respective process models may be automatic as a result of a detected process change or may be on-demand as a result of an injected parameter change. The process models are then analyzed to measure or determine the operation of the process control loops.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: November 1, 2022
    Assignee: FISHER-ROSEMOUNT SYSTEMS, INC.
    Inventors: John M. Caldwell, Terrence L. Blevins, Peter Wojsznis, Wilhelm K. Wojsznis
  • Patent number: 11467545
    Abstract: The disclosed systems and techniques enable dual mode operation for model-based controllers in which the controllers are capable of operating in both (i) a constrained solution mode, and (ii) an unconstrained solution mode. The dual mode operation improves control because it enables the use of constrained solution mode operation when possible (constrained solution mode often enables superior control) and enables the use of unconstrained solution mode when constrained solution mode is not possible (e.g., when it is impossible to develop the constrained solution with the time available). This enables superior control when compared to typical model predictive control (MPC) controllers.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: October 11, 2022
    Assignee: FISHER-ROSEMOUNT SYSTEMS, INC.
    Inventors: Wilhelm K. Wojsznis, Mark J. Nixon, John M. Caldwell
  • Publication number: 20210271212
    Abstract: The disclosed systems and techniques enable dual mode operation for model-based controllers in which the controllers are capable of operating in both (i) a constrained solution mode, and (ii) an unconstrained solution mode. The dual mode operation improves control because it enables the use of constrained solution mode operation when possible (constrained solution mode often enables superior control) and enables the use of unconstrained solution mode when constrained solution mode is not possible (e.g., when it is impossible to develop the constrained solution with the time available). This enables superior control when compared to typical model predictive control (MPC) controllers.
    Type: Application
    Filed: February 28, 2020
    Publication date: September 2, 2021
    Inventors: Wilhelm K. Wojsznis, Mark J. Nixon, John M. Caldwell
  • Patent number: 10545489
    Abstract: Techniques for determining device-specific information such as commissioning data, location information, images, and other data descriptive of a process device installed in a plant include obtaining the device-specific information at a local device during the process device's commissioning. Based on this information, the local device determines the relative order of the process device within a process flow, and may determine a process element alignment map indicating the activation order of a plurality of process elements within the flow. A user may modify the map at the local device. The map is transmitted to a process control big data network for use in discovery and learning analytics. The device-specific information and/or the map may be utilized to generate, at the local device, representations/views of the process flow, which may include real-time operational data. A user may zoom in or out on these views for more or less detail.
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: January 28, 2020
    Assignee: FISHER-ROSEMOUNT SYSTEMS, INC.
    Inventors: Daniel Dean Christensen, Ken J. Beoughter, Terrence L. Blevins, Mark J. Nixon, Paul R. Muston, Wilhelm K. Wojsznis
  • Patent number: 10311015
    Abstract: A distributed big data device in a process plant includes an embedded big data appliance configured to locally stream and store, as big data, data that is generated, received, or observed by the device, and to perform one or more learning analyzes on at least a portion of the stored data. The embedded big data appliance generates or creates learned knowledge based on a result of the learning analysis, which the device may use to modify its operation to control a process in real-time in the process plant, and/or which the device may transmit to other devices in the process plant. The distributed big data device may be a field device, a controller, an input/output device, or other process plant device, and may utilize learned knowledge created by other devices when performing its learning analysis.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: June 4, 2019
    Assignee: FISHER-ROSEMOUNT SYSTEMS, INC.
    Inventors: Mark J. Nixon, Paul Richard Muston, Terrence L. Blevins, Wilhelm K. Wojsznis
  • Patent number: 10310456
    Abstract: A method of controlling and managing a process control system having a plurality of control loops includes implementing a plurality of control routines to control operation of the plurality of control loops, respectively, wherein the control routines may include at least one non-adaptive control routine. The method then collects operating condition data in connection with the operation of each control loop, and identifies a respective process model for each control loop from the respective operating condition data collected for each control loop. The identification of the respective process models may be automatic as a result of a detected process change or may be on-demand as a result of an injected parameter change. The process models are then analyzed to measure or determine the operation of the process control loops.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: June 4, 2019
    Assignee: FISHER-ROSEMOUNT SYSTEMS, INC.
    Inventors: John M. Caldwell, Terrence L. Blevins, Peter Wojsznis, Wilhelm K. Wojsznis
  • Patent number: 10282676
    Abstract: Techniques for automatically or autonomously performing signal processing-based learning in a process plant are disclosed. Generally, said techniques automatically or autonomously perform signal processing on a real-time signal that is generated based on the process plant controlling a process. Typically, the signal corresponds to a parameter value that varies over time, and the signal is processed as it is generated in real-time during on-line plant operations. Results of the signal processing may indicate characteristics of the signal, and one or more analytics functions may determine the sources of the characteristics, which may include a process element or device, a piece of equipment, and/or an asset of the process plant that is upstream, within the process, of the source of the signal. An autonomous signal processor may be integrated with or included in a process control device and/or a big data node of the process plant.
    Type: Grant
    Filed: October 6, 2014
    Date of Patent: May 7, 2019
    Assignee: FISHER-ROSEMOUNT SYSTEMS, INC.
    Inventors: Mark J. Nixon, Peter Zornio, Wilhelm K. Wojsznis, J. Michael Lucas, Paul R. Muston, Eric D. Rotvold, Terrence L. Blevins
  • Patent number: 10168691
    Abstract: A data pipeline is used as a fundamental processing element for implementing techniques that automatically or autonomously perform signal processing-based learning in a process plant or monitoring system. Each data pipeline includes a set of communicatively interconnected data processing blocks that perform processing on one or more sources of data in a predetermined order to, for example, clean the data, filter the data, select data for further processing, perform supervised or unsupervised learning on the data, etc. The individual processing blocks or modules within a data pipeline may be stored and executed at different devices in a plant network to perform distributed data processing. Moreover, each data pipeline can be integrated into one or more higher level analytic modules that perform higher level analytics, such as quality prediction, fault detection, etc. on the processed data.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: January 1, 2019
    Assignee: FISHER-ROSEMOUNT SYSTEMS, INC.
    Inventors: Peter Zornio, Mark J. Nixon, Wilhelm K. Wojsznis, Michael J. Lucas, Paul R. Muston, Eric D. Rotvold, Terrence L. Blevins, Gary K. Law
  • Patent number: 10140253
    Abstract: A process modeling technique uses a single statistical model, such as a PLS, PRC, MLR, etc. model, developed from historical data for a typical process and uses this model to perform quality prediction or fault detection for various different process states of a process. The modeling technique determines means (and possibly standard deviations) of process parameters for each of a set of product grades, throughputs, etc., compares on-line process parameter measurements to these means and uses these comparisons in a single process model to perform quality prediction or fault detection across the various states of the process. Because only the means and standard deviations of the process parameters of the process model are updated, a single process model can be used to perform quality prediction or fault detection while the process is operating in any of the defined process stages or states.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: November 27, 2018
    Assignee: FISHER-ROSEMOUNT SYSTEMS, INC.
    Inventors: Terrence L. Blevins, Wilhelm K. Wojsznis, Mark J. Nixon, John M. Caldwell
  • Patent number: 10061286
    Abstract: A multiple-input/multiple-output control routine in the form of a model predictive control (MPC) routine operates with wireless or other sensors that provide non-periodic, intermittent or otherwise delayed process variable measurement signals at an effective rate that is slower than the MPC controller scan or execution rate. The wireless MPC routine operates normally even when the measurement scan period for the controlled process variables is significantly larger than the operational scan period of the MPC controller routine, while providing control signals that enable control of the process in a robust and acceptable manner. During operation, the MPC routine uses an internal process model to simulate one or more measured process parameter values without performing model bias correction during the scan periods at which no new process parameter measurements are transmitted to the controller.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: August 28, 2018
    Assignee: FISHER-ROSEMOUNT SYSTEMS, INC.
    Inventors: Wilhelm K. Wojsznis, Terrence L. Blevins, Mark J. Nixon, John M. Caldwell
  • Patent number: 9983559
    Abstract: A simulation system that includes interconnected simulation blocks which use process models to perform simulation activities for a process plant is integrated into a process control environment for the process plant in a manner that makes the simulation system easy to use and easily updated for on-line process simulation. The disclosed simulation system enables future predicted values as well as the current predicted values of process parameters produced by the simulation system to be made available for performance evaluation as well as to guide plant operations. Additionally, the simulation system is connected to the operating process plant to receive various on-line process plant measurements, and uses these measurements to automatically update the process models used in the simulation system, to thereby keep the simulation system coordinated with the actual operating conditions of the process plant.
    Type: Grant
    Filed: October 2, 2006
    Date of Patent: May 29, 2018
    Assignee: FISHER-ROSEMOUNT SYSTEMS, INC.
    Inventors: Terrence L. Blevins, Wilhelm K. Wojsznis, Mark J. Nixon
  • Patent number: 9904268
    Abstract: A simulation system that includes interconnected simulation blocks which use process models to perform simulation activities for a process plant is integrated into a process control environment for the process plant in a manner that makes the simulation system easy to use and easily updated for on-line process simulation. The disclosed simulation system enables future predicted values as well as the current predicted values of process parameters produced by the simulation system to be made available for performance evaluation as well as to guide plant operations. Additionally, the simulation system is connected to the operating process plant to receive various on-line process plant measurements, and uses these measurements to automatically update the process models used in the simulation system, to thereby keep the simulation system coordinated with the actual operating conditions of the process plant.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: February 27, 2018
    Assignee: FISHER-ROSEMOUNT SYSTEMS, INC.
    Inventors: Terrence L. Blevins, Wilhelm K. Wojsznis, Mark J. Nixon
  • Patent number: 9823626
    Abstract: A regional big data node oversees or services, during real-time operations of a process plant or process control system, a respective region of a plurality of regions of the plant/system, where at least some of the regions each includes one or more process control devices that operate to control a process executed in the plant/system. The regional big data node is configured to receive and store, as big data, streamed data and learned knowledge that is generated, received, or observed by its respective region, and to perform one or more learning analyses on at least some of the stored data. As a result of the learning analyses, the regional big data node creates new learned knowledge which the regional big data node may use to modify operations in its respective region, and/or which the regional big data node may transmit to other big data nodes of the plant/system.
    Type: Grant
    Filed: October 6, 2014
    Date of Patent: November 21, 2017
    Assignee: FISHER-ROSEMOUNT SYSTEMS, INC.
    Inventors: Peter Zornio, Mark J. Nixon, Wilhelm K. Wojsznis, J. Michael Lucas, Eric D. Rotvold, Terrence L. Blevins, Paul Richard Muston, Gary K. Law
  • Patent number: 9804588
    Abstract: Techniques for automatically determining, without user input, one or more sources of a variation in the behavior of a target process element operating to control a process in a process plant include using a process element alignment map to determine process elements upstream of the target process element in the process; performing a data analysis on data corresponding to the upstream elements with respect to the target element to determine behavior time offsets, strengths of impact, and impact delays; and determining the source(s) based on the data analysis outputs. Techniques may include automatically defining the process element alignment map by obtaining and processing data from a plurality of diagrams or data sources of the process and/or plant. Furthermore, the techniques may be performed during plant run-time by any high-volume, high density device such as centralized or embedded big data appliances, controllers, field or I/O devices, and/or by an unsupervised application.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: October 31, 2017
    Assignee: FISHER-ROSEMOUNT SYSTEMS, INC.
    Inventors: Terrence L. Blevins, Wilhelm K. Wojsznis, Mark J. Nixon, Paul Richard Muston
  • Publication number: 20170153633
    Abstract: Techniques for determining device-specific information such as commissioning data, location information, images, and other data descriptive of a process device installed in a plant include obtaining the device-specific information at a local device during the process device's commissioning. Based on this information, the local device determines the relative order of the process device within a process flow, and may determine a process element alignment map indicating the activation order of a plurality of process elements within the flow. A user may modify the map at the local device. The map is transmitted to a process control big data network for use in discovery and learning analytics. The device-specific information and/or the map may be utilized to generate, at the local device, representations/views of the process flow, which may include real-time operational data. A user may zoom in or out on these views for more or less detail.
    Type: Application
    Filed: February 13, 2017
    Publication date: June 1, 2017
    Inventors: Daniel Dean Christensen, Ken J. Beoughter, Terrence L. Blevins, Mark J. Nixon, Paul R. Muston, Wilhelm K. Wojsznis
  • Patent number: 9588514
    Abstract: Techniques for determining device-specific information such as commissioning data, location information, images, and other data descriptive of a process device installed in a plant include obtaining the device-specific information at a local device during the process device's commissioning. Based on this information, the local device determines the relative order of the process device within a process flow, and may determine a process element alignment map indicating the activation order of a plurality of process elements within the flow. A user may modify the map at the local device. The map is transmitted to a process control big data network for use in discovery and learning analytics. The device-specific information and/or the map may be utilized to generate, at the local device, representations/views of the process flow, which may include real-time operational data. A user may zoom in or out on these views for more or less detail.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: March 7, 2017
    Assignee: FISHER-ROSEMOUNT SYSTEMS, INC.
    Inventors: Daniel Dean Christensen, Ken J. Beoughter, Terrence L. Blevins, Mark J. Nixon, Paul R. Muston, Wilhelm K. Wojsznis
  • Patent number: 9436174
    Abstract: A control technique that enables the use of received process variable values in a Kalman filter based control scheme without the need to change the control algorithm includes a controller, such as a PID controller, and a Kalman filter, coupled to receive feedback in the form of, for example, process variable measurement signals from a process. The Kalman filter is configured to produce an estimate of the process variable value from slow or intermittent process feedback signals while providing a new process variable estimate to the controller during each of the controller execution cycles to enable the controller to produce a control signal used to control the process. The Kalman filter is also configured to compensate the process variable estimate for process noise with non-zero mean value that may be present in the process. The Kalman filter may apply this compensation to both continuously and intermittently received process variable values.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: September 6, 2016
    Assignee: FISHER-ROSEMOUNT SYSTEMS, INC.
    Inventors: Terrence L. Blevins, Mark J. Nixon, Wilhelm K. Wojsznis
  • Patent number: 9405286
    Abstract: A control technique that enables the use of slow or intermittently received process variable values in a predictor based control scheme without the need to change the control algorithm includes a controller, such as a PID controller, and a predictor, such as a model based predictor, coupled to receive intermittent feedback in the form of, for example, process variable measurement signals from a process. The predictor, which may be an observer like a Kalman filter, or which may be a Smith predictor, is configured to produce an estimate of the process variable value from the intermittent or slow process feedback signals while providing a new process variable estimate to the controller during each of the controller execution cycles to enable the controller to produce a control signal used to control the process.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: August 2, 2016
    Assignee: FISHER-ROSEMOUNT SYSTEMS, INC.
    Inventors: Terrence L. Blevins, Wilhelm K. Wojsznis, Mark J. Nixon
  • Publication number: 20160216706
    Abstract: Techniques for determining device-specific information such as commissioning data, location information, images, and other data descriptive of a process device installed in a plant include obtaining the device-specific information at a local device during the process device's commissioning. Based on this information, the local device determines the relative order of the process device within a process flow, and may determine a process element alignment map indicating the activation order of a plurality of process elements within the flow. A user may modify the map at the local device. The map is transmitted to a process control big data network for use in discovery and learning analytics. The device-specific information and/or the map may be utilized to generate, at the local device, representations/views of the process flow, which may include real-time operational data. A user may zoom in or out on these views for more or less detail.
    Type: Application
    Filed: January 26, 2015
    Publication date: July 28, 2016
    Inventors: Daniel Dean Christensen, Ken J. Beoughter, Terrence L. Blevins, Mark J. Nixon, Paul R. Muston, Wilhelm K. Wojsznis
  • Patent number: 9323234
    Abstract: Example methods, apparatuses and systems to correlate candidate factors to a predicted fault in a process control system are disclosed. Techniques may include obtaining a value associated with a particular factor corresponding to a process, and predicting a fault based on the value. A set of candidate factors corresponding to the predicted fault may be determined, and a correlation between the predicted fault and at least one factor from the set may be displayed. Different sections of the display may respectively correspond to the predicted fault and to the at least one factor, and the correlation may be indicated by time aligning the different sections. Modifications to one displayed section may result in automatic modification of other sections to maintain the correlation. A user may select one or more candidate factors to be displayed, and may indicate a particular point of a particular section to obtain additional details.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: April 26, 2016
    Assignee: FISHER-ROSEMOUNT SYSTEMS, INC.
    Inventors: Ling Zhou, Paul K. Daly, Robert B. Havekost, Terrence L. Blevins, Wilhelm K. Wojsznis, Mark J. Nixon, Christopher J. Worek, Paul R. Muston