Patents by Inventor Wilhelmus Cornelis Keur

Wilhelmus Cornelis Keur has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9486730
    Abstract: The invention relates to an oxygen separation device (12, 14), comprising a gas inlet (29, 31) at a primary side for guiding a flow of oxygen comprising gas into the oxygen separation device (12, 14) and having a gas outlet (33, 35) at a secondary side for guiding a flow of oxygen enriched gas out of the oxygen separation device (12, 14), at least one oxygen separation area (20, 22) with an oxygen separation sorbent (16, 18) being capable of separating oxygen from an oxygen comprising gas by sorbing at least one component of the oxygen comprising gas apart from oxygen and being contaminatable by a contaminant, and a decontamination area (21, 23) with a decontamination material (17, 19) for decontaminating the oxygen comprising gas from at least one contaminant, wherein the oxygen separation area (20, 22) and the decontamination area (21, 23) are fluidly connected by a spacer (76, 78) comprising at least one diffusion reducing channel (80, 82), wherein the spacer (76, 78) has a value of diffusion reduction rR
    Type: Grant
    Filed: May 8, 2013
    Date of Patent: November 8, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Peter Lower Bliss, Rainer Hilbig, Joseph Thomas Dolensky, Achim Gerhard Rolf Koerber, Paul Van Der Sluis, Mareike Klee, Wilhelmus Cornelis Keur
  • Publication number: 20160312117
    Abstract: The present invention relates to a ceramic or polycrystalline scintillator composition represented by the formula (LUy-Gd3-y)(GxAI5-x)O12: Ce; wherein y=1±0.5; wherein x=3±0.25; and wherein Ce is in the range 0.01 mol % to 0.7 mol %. The scintillator composition finds application in the sensitive detection of ionizing radiation and may for example be used in the detection of gamma photons in the field of PET imaging.
    Type: Application
    Filed: December 16, 2014
    Publication date: October 27, 2016
    Inventors: Herfried Karl WIECZOREK, Cornelis Reinder RONDA, Jacobus Gerardus BOEREKAMP, Anne-Marie Andree VAN DONGEN, Sandra Johanna Maria Paula SPOOR, Daniela BUETTNER, Wilhelmus Cornelis KEUR
  • Publication number: 20160310887
    Abstract: The invention relates to an a sensor system (100) for quantitatively detecting at least one compound in a fluid mixture, said fluid mixture comprising the compound to be detected, wherein the sensor system (100) comprises a sorbent material (102) being capable of sorbing the at least one compound to be detected, wherein the sorbent material (102) undergoes a temperature change when sorbing the at least one compound; at least a first temperature sensor (104) for measuring the temperature of the sorbent material (102); and a control unit (110) being adapted for quantitatively determining the at least one compound to be detected based on the temperature change of the sorbent material (102). Such a sensor system (100) provides an improved measurement especially in the field of oxygen concentrators. The invention further relates to an oxygen concentrator (10) for generating oxygen enriched gas as well as to a method of quantitatively detecting at least one compound in a fluid mixture.
    Type: Application
    Filed: December 15, 2014
    Publication date: October 27, 2016
    Inventors: PAUL VAN DER SLUIS, ACHIM GERHARD ROLF KOERBER, RAINER HILBIG, WILHELMUS CORNELIS KEUR
  • Publication number: 20160293799
    Abstract: The invention provides a light emitting semiconductor device comprising a zinc magnesium oxide based layer as active layer, wherein the zinc magnesium oxide based layer comprises an aluminum doped zinc magnesium oxide layer having the nominal composition Zn1-xMgxO with 1-350 ppm Al, wherein x is in the range of 0<x?0.3. The invention further provides a method for the production of such aluminum doped zinc magnesium oxide, the method comprising heat treating a composition comprising Zn, Mg and Al with a predetermined composition at elevated temperatures, and subsequently annealing the heat treated composition to provide said aluminum doped zinc magnesium oxide.
    Type: Application
    Filed: June 9, 2016
    Publication date: October 6, 2016
    Inventors: Kamal Asadi, Dagobert Michel De Leeuw, Johannes Franciscus Maria Cillessen, Wilhelmus Cornelis Keur, Frank Verbakel, Patrick John Baesjou, Cornelis Eustatius Timmering
  • Patent number: 9385264
    Abstract: The invention provides a light emitting semi conductor device comprising a zinc magnesium oxide based layer as active layer, wherein the zinc magnesium oxide based layer comprises an aluminum doped zinc magnesium oxide layer having the nominal composition Zn-xMgxO with 1-350 ppm Al, wherein x is in the range of 0<x?0.3. The invention further provides a method for the production of such aluminum doped zinc magnesium oxide, the method comprising heat treating a composition comprising Zn, Mg and Al with a predetermined composition at elevated temperatures, and subsequently annealing the heat treated composition to provide said aluminum doped zinc magnesium oxide.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: July 5, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Kamal Asadi, Dagobert Michael De Leeuw, Johannes Franciscus Maria Cillessen, Wilhelmus Cornelis Keur, Frank Verbakel, Patrick John Baesjou, Cornelis Eustatius Timmering
  • Patent number: 9315726
    Abstract: The present invention relates to mixed oxide materials, methods for their preparation, detectors for ionizing radiation and CT scanners. In particular, a mixed oxide material is proposed having the formula (YwTbx)3Al5-yGayO12:Cez, wherein 0.01?w?0.99, 0.01?x?0.99, 0?y?3.5 and 0.001?z?0.10 and wherein w+x+3*z=1, whereby the mixed oxide material is doped with at least 10 ppm V.
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: April 19, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Cornelis Reinder Ronda, Jacobus Gerardus Boerekamp, Daniela Buettner, Anne-Marie Andree Van Dongen, Herfried Karl Wieczorek, Sandra Johanna Maria Paula Spoor, Silvan Djohan, Wilhelmus Cornelis Keur
  • Publication number: 20160084476
    Abstract: The invention provides a process for the production of a (particulate) luminescent material comprising particles, especially substantially spherical particles, having a porous inorganic material core with pores, especially macro pores, which are at least partly filled with a polymeric material with luminescent quantum dots embedded therein, wherein the process comprises (i) impregnating the particles of a particulate porous inorganic material with pores with a first liquid (“ink”) comprising the luminescent quantum dots and a curable or polymerizable precursor of the polymeric material, to provide pores that are at least partly filled with said luminescent quantum dots and curable or polymerizable precursor; and (ii) curing or polymerizing the curable or polymerizable precursor within pores of the porous material, as well as a product obtainable thereby.
    Type: Application
    Filed: March 19, 2014
    Publication date: March 24, 2016
    Inventors: ROELOF KOOLE, MARCEL RENE BOHMER, JAN CORNELIS KRIEGE, GODEFRIDUS JOHANNES VERHOECKX, PAULUS HUBERTUS GERARDUS OFFERMANS, PATRICK JOHN BAESJOU, WILHELMUS CORNELIS KEUR, JOHANNES FRANCISCUS MARIA CILLESSEN, EMILE JOHANNES KAREL VERSTEGEN, ANTONIUS WILHELMUS MARIA DE LAAT
  • Publication number: 20160024380
    Abstract: The present invention relates to mixed oxide materials, methods for their preparation, detectors for ionizing radiation and CT scanners. In particular, a mixed oxide material is proposed having the formula (Yw Tbx)3Al5-y GayO12:Cez, wherein 0.01?w?0.99, 0.01?x?0.99, 0?y?3.5 and 0.001?z?0.10 and wherein w+x+3*z=1, whereby the mixed oxide material is doped with at least 10 ppm V.
    Type: Application
    Filed: March 21, 2014
    Publication date: January 28, 2016
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Cornelis Reinder RONDA, Jacobus Gerardus BOEREKAMP, Daniela BUETTNER, Anne-Marie Andree VAN DONGEN, Herfried Karl WIECZOREK, Sandra Johanna Maria Paula SPOOR, Silvan DJOHAN, Wilhelmus Cornelis KEUR
  • Publication number: 20150340559
    Abstract: The invention provides a light emitting semi conductor device comprising a zinc magnesium oxide based layer as active layer, wherein the zinc magnesium oxide based layer comprises an aluminum doped zinc magnesium oxide layer having the nominal composition Zn-xMgxO with 1-350 ppm Al, wherein x is in the range of 0<x?0.3. The invention further provides a method for the production of such aluminum doped zinc magnesium oxide, the method comprising heat treating a composition comprising Zn, Mg and Al with a predetermined composition at elevated temperatures, and subsequently annealing the heat treated composition to provide said aluminum doped zinc magnesium oxide.
    Type: Application
    Filed: June 28, 2013
    Publication date: November 26, 2015
    Inventors: KAMAL ASADI, DAGOBERT MICHAEL DE LEEUW, JOHANNES FRANCISCUS MARIA CILLESSEN, WILHELMUS CORNELIS KEUR, FRANK VERBAKEL, PATRICK JOHN BAESJOU, CORNELIS EUSTATIUS TIMMERING
  • Publication number: 20150275080
    Abstract: The present invention relates to a scintillator material comprising a scintillator host material doped with cerium. The scintillator host material is at least one of the group comprising i) garnets ii) CaGa2S4 iii) SrGa2S4 iv) BaGa2S4 v) CaS vi) SrS; and the amount of ceriumis controlled in the range 0.1 mol % to 1.0 mol %. The material may be used in gamma photon detection, in a gamma photon detector and as such in a PET imaging system.
    Type: Application
    Filed: October 31, 2013
    Publication date: October 1, 2015
    Inventors: Cornelis Reinder Ronda, Jacobus Gerardus Boerekamp, Sandra Johanna Maria Paula Spoor, Anne-Marie Andree Van Dongen, Herfried Karl Wieczorek, Wilhelmus Cornelis Keur
  • Publication number: 20150238895
    Abstract: The present invention refers to an oxygen separation device (12, 14) for a pressure swing adsorption system. In order to provide at least one of improved maintenance behavior, longer lifetime and improved energy consumption, the oxygen separation device (12, 14) comprises a gas inlet (18, 22) at a primary side for guiding a flow of oxygen comprising gas into the oxygen separation device (12, 14) and a gas outlet (28, 30) at a secondary side for guiding a flow of oxygen enriched gas out of the oxygen separation device (12, 14), an oxygen separation membrane (78) comprising an oxygen separation sorbent being capable of separating oxygen from an oxygen comprising gas by sorbing at least one component of the oxygen comprising gas apart from oxygen, and a support structure (80) for supporting the oxygen separation membrane (78), wherein the support structure (80) comprises a plurality of support bars (82) being fixed to the oxygen separation membrane (78).
    Type: Application
    Filed: July 19, 2013
    Publication date: August 27, 2015
    Inventors: Mareike Klee, Rainer Hilbig, Robert William Murdoch, Achim Gerhard Rolf Koerber, Wilhelmus Cornelis Keur, Paul Van Der Sluis
  • Publication number: 20150128800
    Abstract: The invention relates to an oxygen separation device (12, 14), comprising a gas inlet (29, 31) at a primary side for guiding a flow of oxygen comprising gas into the oxygen separation device (12, 14) and having a gas outlet (33, 35) at a secondary side for guiding a flow of oxygen enriched gas out of the oxygen separation device (12, 14), at least one oxygen separation area (20, 22) with an oxygen separation sorbent (16, 18) being capable of separating oxygen from an oxygen comprising gas by sorbing at least one component of the oxygen comprising gas apart from oxygen and being contaminatable by a contaminant, and a decontamination area (21, 23) with a decontamination material(17, 19) for decontaminating the oxygen comprising gas from at least one contaminant, wherein the oxygen separation area (20, 22) and the decontamination area (21, 23) are fluidly connected by a spacer (76, 78) comprising at least one diffusion reducing channel (80, 82), wherein the spacer (76, 78) has a value of diffusion reduction rR o
    Type: Application
    Filed: May 8, 2013
    Publication date: May 14, 2015
    Applicant: Koninklijke Philips N.V.
    Inventors: Peter Lower Bliss, Rainer Hilbig, Joseph Thomas Dolensky, Achim Gerhard Rolf Koerber, Paul Van Der Sluis, Mareike Klee, Wilhelmus Cornelis Keur
  • Publication number: 20150128801
    Abstract: The invention relates to a method of separating oxygen from an oxygen comprising gas, the method comprising the steps of: performing at least a first and a second period of oxygen separation, the first and the second period of oxygen separation each comprising the steps of guiding an oxygen comprising gas to the primary side of an oxygen separation device (12, 14), the oxygen separation device (12, 14) comprising an oxygen separation sorbent (16, 18), and generating a flow of oxygen enriched gas out of the oxygen separation device (12, 14) by creating a pressure difference between the primary side and the secondary side of the oxygen separation device (12, 14), and performing a cooling period between the first and the second period of oxygen separation, wherein the cooling period comprises the steps of guiding a flushing sorbate through the oxygen separation device (12, 14), the flushing sorbate having an adsorption energy e1 with respect to the oxygen separation sorbent (16, 18), and guiding a cooling sorbat
    Type: Application
    Filed: April 22, 2013
    Publication date: May 14, 2015
    Inventors: Rainer Hilbig, Achim Gerhard Rolf Koerber, Paul Van Der Sluis, Mareike Klee, Wilhelmus Cornelis Keur
  • Publication number: 20150041099
    Abstract: The present invention relates to a heating device. In order to allow heating essentially without any latency period and with low costs, the heating device comprises: at least one container (12) having an inlet opening (14) and an outlet opening (16) and comprising an adsorbent agent (18) being provided between said inlet opening (14) and outlet opening (16) and being capable of adsorbing an adsorbate thereby releasing adsorption energy; and a gas conveying device (21) for conveying an adsorbate comprising gas through the interior of the container (12); wherein a gas conduit (22) is provided being connected to the outlet opening (16) of the container (12) for guiding the gas heated by adsorption energy inside the container (12) to a location to be heated with elevated temperature. The present invention further relates to a heating method.
    Type: Application
    Filed: March 20, 2013
    Publication date: February 12, 2015
    Inventors: Rainer Hilbig, Achim Gerhard Rolf Koerber, Paul Van Der Sluis, Mareike Klee, Wilhelmus Cornelis Keur
  • Patent number: 8906137
    Abstract: The present invention relates to an arrangement for separating oxygen from an oxygen containing gas. It comprises a membrane unit (12), and an electrode unit (24). The membrane unit (12) comprises a porous substrate (20), a dense membrane (14) and at least one electrode (18), wherein the porous substrate (20) is directed towards the electrode unit (24), and wherein the electrode unit (24) comprises at least one electrode comprising at least one rotatable electrode wing (26) being at least partially electrically conductive. An arrangement according to the invention allows to separate oxygen with improved efficiency and improved convenience with respect to maintenance and noise.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: December 9, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Rainer Hilbig, Mareike Klee, Wilhelmus Cornelis Keur
  • Publication number: 20140174913
    Abstract: The invention relates to the field of production of barium-scandate dispenser cathodes or other barium-scan-date materials. A target (66) containing a mixture of BaO, CaO, Al2O3 and SC2O3 tends to be more stable, the higher the scandia (scandium oxide) content is. However, an increased scandia content results in a reduced emission capability. A destabilizing effect of BaO and CaO reactions is counteracted by the more inert SC2O3 and also AI2O3 components, as not only an increased scandia content stabilizes the material but also an increased alumina (aluminum oxide) content improves the stability.
    Type: Application
    Filed: July 31, 2012
    Publication date: June 26, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Georg Friedrich Gaertner, Wilhelmus Cornelis Keur
  • Publication number: 20140048409
    Abstract: The present invention relates to a method of generating oxygen. The method addresses the objects of reducing the servicing work and improving the purity of the generated oxygen. According to the invention, the method comprises the steps of: providing an oxygen comprising gas at a primary side of a dense voltage drivable membrane (12); applying a voltage between a conductive element at the primary side of the membrane (12) and a conductive element at a secondary side of the membrane (12), the conductive elements being electrically connected to the membrane (12), wherein a plasma (18, 20) is generated at at least one of the primary side and the secondary side of the membrane (12), the plasma (18, 20) being used as conductive element.
    Type: Application
    Filed: April 19, 2012
    Publication date: February 20, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Rainer Hilbig, Achim Gerhard Rolf Koerber, Mareike Klee, Wilhelmus Cornelis Keur
  • Publication number: 20130213227
    Abstract: The present invention relates to an arrangement for separating oxygen from an oxygen containing gas. It comprises a membrane unit (12), and an electrode unit (24). The membrane unit (12) comprises a porous substrate (20), a dense membrane (14) and at least one electrode (18), wherein the porous substrate (20) is directed towards the electrode unit (24), and wherein the electrode unit (24) comprises at least one electrode comprising at least one rotatable electrode wing (26) being at least partially electrically conductive. An arrangement according to the invention allows to separate oxygen with improved efficiency and improved convenience with respect to maintenance and noise.
    Type: Application
    Filed: October 18, 2011
    Publication date: August 22, 2013
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Rainer Hilbig, Mareike Klee, Wilhelmus Cornelis Keur
  • Publication number: 20130105736
    Abstract: The invention relates to an converter material for solar cells using Sm2+.
    Type: Application
    Filed: July 5, 2011
    Publication date: May 2, 2013
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Cornelis Reinder Ronda, Dirk Kornelis Gerhardus De Boer, Andries Meijerink, Nikolaos Christogiannis, Danielle Beelen, Wilhelmus Cornelis Keur
  • Publication number: 20120308779
    Abstract: The invention relates to a membrane system which is particular suitable for oxygen generation. It comprises a membrane (14), and a porous substrate (12) for supporting the membrane (14), wherein the substrate (12) comprises pillars (15) and defined channels (16) for bringing a gas in controlled contact with the membrane (14). This membrane system (10) allows a gas flux and is furthermore applicable for small and light devices.
    Type: Application
    Filed: January 28, 2011
    Publication date: December 6, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Mareike Klee, Ruediger Mauczok, Rainer Hilbig, Wilhelmus Cornelis Keur