Patents by Inventor Will G. Fisher, JR.

Will G. Fisher, JR. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11447708
    Abstract: Systems and methods are provided for production of base stocks with a viscosity index of at least 120 and/or a sulfur content of 300 wppm or less and/or a kinematic viscosity at 100° C. of 3.0 cSt to 8.0 cSt by hydroconversion of a raffinate from aromatic extraction of a feed. The base stocks can further have a reduced content of 3+ ring naphthenes, such as 4.0 wt % or less, or 1.0 wt % or less. The base stocks can be produced by performing an elevated amount of feed conversion relative to 370° C. during hydroconversion of the raffinate, and optionally additional conversion during catalytic dewaxing of the hydroconverted raffinate. The base stocks can optionally be blended with additional base stocks and/or lubricant additives for production of lubricant compositions.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: September 20, 2022
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Jason T. Calla, Will G. Fisher, Jr., Eric D. Joseck, Seth D. Fortney
  • Publication number: 20200123453
    Abstract: Systems and methods are provided for production of base stocks with a viscosity index of at least 120 and/or a sulfur content of 300 wppm or less and/or a kinematic viscosity at 100° C. of 3.0 cSt to 8.0 cSt by hydroconversion of a raffinate from aromatic extraction of a feed. The base stocks can further have a reduced content of 3+ ring naphthenes, such as 4.0 wt % or less, or 1.0 wt % or less. The base stocks can be produced by performing an elevated amount of feed conversion relative to 370° C. during hydroconversion of the raffinate, and optionally additional conversion during catalytic dewaxing of the hydroconverted raffinate. The base stocks can optionally be blended with additional base stocks and/or lubricant additives for production of lubricant compositions.
    Type: Application
    Filed: December 17, 2019
    Publication date: April 23, 2020
    Inventors: Jason T. Calla, Will G. Fisher, Jr., Eric D. Joseck, Seth D. Fortney
  • Patent number: 10557092
    Abstract: Systems and methods are provided for production of base stocks with a viscosity index of at least 120 and/or a sulfur content of 300 wppm or less and/or a kinematic viscosity at 100° C. of 3.0 cSt to 8.0 cSt by hydroconversion of a raffinate from aromatic extraction of a feed. The base stocks can further have a reduced content of 3+ ring naphthenes, such as 4.0 wt % or less, or 1.0 wt % or less. The base stocks can be produced by performing an elevated amount of feed conversion relative to 370° C. during hydroconversion of the raffinate, and optionally additional conversion during catalytic dewaxing of the hydroconverted raffinate. The base stocks can optionally be blended with additional base stocks and/or lubricant additives for production of lubricant compositions.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: February 11, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jason T. Calla, Will G. Fisher, Jr., Eric D. Joseck, Seth D. Fortney
  • Publication number: 20180037829
    Abstract: Systems and methods are provided for production of base stocks with a viscosity index of at least 120 and/or a sulfur content of 300 wppm or less and/or a kinematic viscosity at 100° C. of 3.0 cSt to 8.0 cSt by hydroconversion of a raffinate from aromatic extraction of a feed. The base stocks can further have a reduced content of 3+ ring naphthenes, such as 4.0 wt % or less, or 1.0 wt % or less. The base stocks can be produced by performing an elevated amount of feed conversion relative to 370° C. during hydroconversion of the raffinate, and optionally additional conversion during catalytic dewaxing of the hydroconverted raffinate. The base stocks can optionally be blended with additional base stocks and/or lubricant additives for production of lubricant compositions.
    Type: Application
    Filed: July 7, 2017
    Publication date: February 8, 2018
    Inventors: Jason T. Calla, Will G. Fisher, JR., Eric D. Joseck, Seth D. Fortney
  • Publication number: 20150122703
    Abstract: A residual petroleum fraction feed is subjected to a deasphalting process by solvent extraction using a light paraffinic solvent with recovery of the solvent under supercritical process conditions. Fouling is reduced by the injection of an aromatic stream into the DAO-solvent stream from the extractor in order to provide a degree of solvency for residual asphaltenes in the DAO-solvent stream which otherwise would tend to precipitate in the heat exchanger used to create the supercritical conditions for the solvent. The aromatic solvent stream which, by its aromatic character, has solvency properties for the asphaltene components remaining in the DAO-solvent stream, is selected to have a boiling point above the boiling point of the solvent so that it does not contaminate the process solvent when the solvent is recovered in the solvent recovery section of the unit.
    Type: Application
    Filed: October 30, 2014
    Publication date: May 7, 2015
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Howard Edwin SPENCER, Will G. Fisher, JR., Michael L. Fullen, Brock T. Pearson, Gary Tak Cheng, Matthew Andrews