Patents by Inventor William Bliss

William Bliss has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9246587
    Abstract: Systems and methods for optical multi-path interference (MPI) compensation are provided. In an embodiment, a mean MPI signal representing a mean amplitude of the MPI in an input signal is generated and subtracted from a first estimate of transmitted amplitude of the input signal to generate a mean MPI compensated estimate of transmitted amplitude. The mean MPI compensated estimate of transmitted amplitude is sliced to generate a decision of transmitted amplitude of the input signal. The mean MPI signal can be generated using a mean MPI feedback loop or using an iterative feed-forward process. In another embodiment, mean MPI levels corresponding to respective transmitted intensity levels are generated and used to control slice levels of a slicer in order to compensate for MPI.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: January 26, 2016
    Assignee: Broadcom Corporation
    Inventors: William Bliss, John Wang
  • Patent number: 9166831
    Abstract: An asymmetric PHY pair for communicating over a point-to-point link is disclosed. The PHY pair is asymmetric in that the signal processing power used by one of the PHYs to communicate a unit of data over the link is made to be less than that of the other PHY. This asymmetry is accomplished not merely by reducing the signal processing power of one of the PHYs at the expense of the rate at which symbols can be communicated over the link, but by transferring the signal processing power from one of the PHYs to the other PHY so that the symbol rate can be substantially maintained as compared to the symbol rate of a symmetric PHY pair. The asymmetric PHY pair can be advantageously implemented in many different types of communication systems (i.e., in communication systems where one end is more congested and/or crowded than the other end).
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: October 20, 2015
    Assignee: Broadcom Corporation
    Inventor: William Bliss
  • Patent number: 9160482
    Abstract: Embodiments enable quick PHY re-training when the link is restarted due an event such as EMI, for example. In particular, embodiments recognize that, in the case of such events as EMI, a substantial portion of the training process as prescribed in the standard can be bypassed during the link restart without affecting subsequent link performance. In particular, embodiments recognize that a substantial amount of previously learned link parameters may still be used after link restart, and thus eliminate the need to re-learn them thereby speeding up the link restart process. Further, embodiments recognize that the standard prescribed link start up procedure can be accelerated in the case of link restart by reducing standard prescribed periods for transitioning between states of the link start up process. Additionally, embodiments provide a mechanism that relies on the auxiliary bit (AUX) of LDPC coded user data frames to pre-emptively and dynamically notch out troublesome EMIs before they cause the link to fail.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: October 13, 2015
    Assignee: Broadcom Corporation
    Inventor: William Bliss
  • Patent number: 9094130
    Abstract: Embodiments for improving the Signal to Noise and Distortion (SINAD) ratio in Pulse Amplitude Modulation (PAM)-M optical intensity modulation systems, to enable higher data rate communications, are provided. Embodiments can be used to improve the linearity and reduce the distortion of electrical and electro-optics components (including optical modulators) in optical intensity modulation systems. Embodiments are well suited for use with PAM-M optical intensity modulators, such as segmented Vertical Cavity Surface Emitting Laser (WSEL) and segmented Mach-Zehnder Modulator (MZM), for example.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: July 28, 2015
    Assignee: Broadcom Corporation
    Inventors: William Bliss, John Wang
  • Publication number: 20150201717
    Abstract: A modified adhesive zipper device. The device has two flexible stringers with rows of teeth and an adhesive substance coated on the flexible stringers. The device has a slider and one or two pull tabs for actuation of the slider. The device has stopping means that inhibit the ability of the pull tabs to rotate away from the longitudinal axis of the device, and thereby prevent contact between the pull tabs and the adhesive substance coated on the flexible stringers.
    Type: Application
    Filed: January 17, 2015
    Publication date: July 23, 2015
    Inventors: Berkeley Bliss, James William Bliss
  • Patent number: 9031178
    Abstract: Systems that allow for DFE functionality to be eliminated from the receiver side of a communication system and for a DFE-like functionality to be implemented instead at the transmitter side of the communication system are provided. By removing the DFE functionality from the receiver side, error propagation can be eliminated at the receiver and receiver complexity can be reduced drastically. At the transmitter side, the DFE-like functionality provides the same DFE benefits, and with the transmitter environment being noise-free, no errors can occur due noise boosting, for example. The DFE-like functionality at the transmitter side can be implemented using non-linear (recursive or feed-forward) pre-coders or a combination of non-linear pre-coders and linear filters, which can be configured to invert a net communication channel between the transmitter and the receiver. Embodiments particularly suitable for fiber optic channels and server backplane channels are also provided.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: May 12, 2015
    Assignee: Broadcom
    Inventors: William Bliss, Vasudevan Parthasarathy
  • Patent number: 9018239
    Abstract: In the growing of crops for consumption, a method for the removal of pathogens includes the addition to irrigation water for the crops of an anti-pathogen composition and supplying the anti-pathogen composition to the crops prior to harvest while normal irrigation is effected. The anti-pathogen composition is based on halogens, such as chlorine, bromine and iodine, or mixtures of halogens or halogens combined with other organic radicals including cyanurate, hydantoin, peroxide and chlorine dioxide. BCDMH and TICA are preferred anti-pathogen components of the anti-pathogen composition and may be added to a carrier concentrate and measured and dosed into the irrigation water.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: April 28, 2015
    Inventors: William Bliss, Sandra Bliss
  • Patent number: 9014248
    Abstract: Systems and methods are provided for common mode testing for a system using an Ethernet subsystem. The Ethernet subsystem generates test signals that can be introduced at various points in the system to detect the effect of noise introduced by various elements of the system. By introducing test signals at various points in a system, common mode noise introduced into the system can be more accurately determined.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: April 21, 2015
    Assignee: Broadcom Corporation
    Inventors: Wael William Diab, William Bliss
  • Patent number: 8990654
    Abstract: In conventional Backplane Ethernet systems, data is transmitted over two pairs of copper traces in one direction using a PAM-2 scheme and a baud rate of 10.3125 GHz, giving an effective bit rate of 10.3125 Gbps. The rate at which data can be transmitted in Backplane Ethernet systems, while still being reliably received, is typically limited by ISI caused by the dispersive nature of the copper traces, frequency dependent transmission losses caused primarily by skin effect and dielectric loss of the copper traces, and cross-talk from adjacent communication lines. The present invention is directed to systems for overcoming these and other signal impairments to achieve speeds up to, and beyond, twice the conventional 10 Gbps limit associated with Backplane Ethernet systems.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: March 24, 2015
    Assignee: Broadcom Corporation
    Inventors: William Bliss, Vasudevan Parthasarathy
  • Publication number: 20150063828
    Abstract: Systems that allow for DFE functionality to be eliminated from the receiver side of a communication system and for a DFE-like functionality to be implemented instead at the transmitter side of the communication system are provided. By removing the DFE functionality from the receiver side, error propagation can be eliminated at the receiver and receiver complexity can be reduced drastically. At the transmitter side, the DFE-like functionality provides the same DFE benefits, and with the transmitter environment being noise-free, no errors can occur due noise boosting, for example. The DFE-like functionality at the transmitter side can be implemented using non-linear (recursive or feed-forward) pre-coders or a combination of non-linear pre-coders and linear filters, which can be configured to invert a net communication channel between the transmitter and the receiver. Embodiments particularly suitable for fiber optic channels and server backplane channels are also provided.
    Type: Application
    Filed: September 30, 2013
    Publication date: March 5, 2015
    Inventors: William BLISS, Vasudevan PARTHASARATHY
  • Publication number: 20150003510
    Abstract: An asymmetric PHY pair for communicating over a point-to-point link is disclosed. The PHY pair is asymmetric in that the signal processing power used by one of the PHYs to communicate a unit of data over the link is made to be less than that of the other PHY. This asymmetry is accomplished not merely by reducing the signal processing power of one of the PHYs at the expense of the rate at which symbols can be communicated over the link, but by transferring the signal processing power from one of the PHYs to the other PHY so that the symbol rate can be substantially maintained as compared to the symbol rate of a symmetric PHY pair. The asymmetric PHY pair can be advantageously implemented in many different types of communication systems (i.e., in communication systems where one end is more congested and/or crowded than the other end).
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventor: William BLISS
  • Publication number: 20140321864
    Abstract: Embodiments for improving the Signal to Noise and Distortion (SINAD) ratio in Pulse Amplitude Modulation (PAM)-M optical intensity modulation systems, to enable higher data rate communications, are provided. Embodiments can be used to improve the linearity and reduce the distortion of electrical and electro-optics components (including optical modulators) in optical intensity modulation systems. Embodiments are well suited for use with PAM-M optical intensity modulators, such as segmented Vertical Cavity Surface Emitting Laser (WSEL) and segmented Mach-Zehnder Modulator (MZM), for example.
    Type: Application
    Filed: September 30, 2013
    Publication date: October 30, 2014
    Applicant: Broadcom Corporation
    Inventors: William BLISS, John Wang
  • Publication number: 20140308046
    Abstract: Systems and methods for optical multi-path interference (MPI) compensation are provided. In an embodiment, a mean MPI signal representing a mean amplitude of the MPI in an input signal is generated and subtracted from a first estimate of transmitted amplitude of the input signal to generate a mean MPI compensated estimate of transmitted amplitude. The mean MPI compensated estimate of transmitted amplitude is sliced to generate a decision of transmitted amplitude of the input signal. The mean MPI signal can be generated using a mean MPI feedback loop or using an iterative feed-forward process. In another embodiment, mean MPI levels corresponding to respective transmitted intensity levels are generated and used to control slice levels of a slicer in order to compensate for MPI.
    Type: Application
    Filed: June 26, 2013
    Publication date: October 16, 2014
    Inventors: William BLISS, John WANG
  • Publication number: 20140211832
    Abstract: Systems and methods are provided for common mode testing for a system using an Ethernet subsystem. The Ethernet subsystem generates test signals that can be introduced at various points in the system to detect the effect of noise introduced by various elements of the system. By introducing test signals at various points in a system, common mode noise introduced into the system can be more accurately determined.
    Type: Application
    Filed: January 31, 2013
    Publication date: July 31, 2014
    Applicant: Broadcom Corporation
    Inventors: Wael William DIAB, William Bliss
  • Patent number: 8788917
    Abstract: The present disclosure is directed to systems for achieving speeds up to, and beyond, twice the conventional 10 Gbps limit associated with Backplane Ethernet systems. In one example, the system is a transmitter that includes a FEC encoder configured to generate and append redundant symbols to the input data stream to provide a FEC encoded data stream, a serial-to-parallel module configured to de-serialize the FEC encoded data stream and distribute the FEC encoded data stream over parallel FEC encoded data streams with at least one of the redundant symbols generated by the FEC encoder generated based on data sent over two or more of the parallel FEC encoded data streams, and a line code encoder configured to modulate one of the parallel FEC encoded data streams.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: July 22, 2014
    Assignee: Broadcom Corporation
    Inventor: William Bliss
  • Publication number: 20140112382
    Abstract: In conventional Backplane Ethernet systems, data is transmitted over two pairs of copper traces in one direction using a PAM-2 scheme and a baud rate of 10.3125 GHz, giving an effective bit rate of 10.3125 Gbps. The rate at which data can be transmitted in Backplane Ethernet systems, while still being reliably received, is typically limited by ISI caused by the dispersive nature of the copper traces, frequency dependent transmission losses caused primarily by skin effect and dielectric loss of the copper traces, and cross-talk from adjacent communication lines. The present invention is directed to systems for overcoming these and other signal impairments to achieve speeds up to, and beyond, twice the conventional 10 Gbps limit associated with Backplane Ethernet systems.
    Type: Application
    Filed: December 20, 2013
    Publication date: April 24, 2014
    Applicant: Broadcom Corporation
    Inventors: William BLISS, Vasudevan PARTHASARATHY
  • Patent number: 8661309
    Abstract: In conventional Backplane Ethernet systems, data is transmitted over two pairs of copper traces in one direction using a PAM-2 scheme and a baud rate of 10.3125 GHz, giving an effective bit rate of 10.3125 Gbps. The rate at which data can be transmitted in Backplane Ethernet systems, while still being reliably received, is typically limited by ISI caused by the dispersive nature of the copper traces, frequency dependent transmission losses caused primarily by skin effect and dielectric loss of the copper traces, and cross-talk from adjacent communication lines. The present invention is directed to systems for overcoming these and other signal impairments to achieve speeds up to, and beyond, twice the conventional 10 Gbps limit associated with Backplane Ethernet systems.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: February 25, 2014
    Assignee: Broadcom Corporation
    Inventors: William Bliss, Vasudevan Parthasarathy
  • Publication number: 20130238961
    Abstract: In conventional Backplane Ethernet systems, data is transmitted over two pairs of copper traces in one direction using a PAM-2 scheme and a baud rate of 10.3125 GHz, giving an effective bit rate of 10.3125 Gbps. The rate at which data can be transmuted in Backplane Ethernet systems, while still being reliably received, is typically limited by ISI caused by the dispersive nature of the copper traces, frequency dependent transmission losses caused primarily by skin effect and dielectric loss of the copper traces, and cross-talk from adjacent communication lines. The present invention is directed to systems for overcoming these and other signal impairments to achieve speeds up to, and beyond, twice the conventional 10 Gbps limit associated with Backplane Ethernet systems.
    Type: Application
    Filed: April 16, 2013
    Publication date: September 12, 2013
    Applicant: BROADCOM CORPORATION
    Inventor: WILLIAM BLISS
  • Patent number: 8516331
    Abstract: In conventional Backplane Ethernet systems, data is transmitted over two pairs of copper traces in one direction using a PAM-2 scheme and a baud rate of 10.3125 GHz, giving an effective bit rate of 10.3125 Gbps. The rate at which data can be transmitted in Backplane Ethernet systems, while still being reliably received, is typically limited by ISI caused by the dispersive nature of the copper traces, frequency dependent transmission losses caused primarily by skin effect and dielectric loss of the copper traces, and cross-talk from adjacent communication lines. The present invention is directed to systems for overcoming these and other signal impairments to achieve speeds up to, and beyond, twice the conventional 10 Gbps limit associated with Backplane Ethernet systems.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: August 20, 2013
    Assignee: Broadcom Corporation
    Inventors: William Bliss, Vasudevan Parthasarathy
  • Publication number: 20120277276
    Abstract: In the growing of crops for consumption, a method for the removal of pathogens includes the addition to irrigation water for the crops of an anti-pathogen composition and supplying the anti-pathogen composition to the crops prior to harvest while normal irrigation is effected. The anti-pathogen composition is based on halogens, such as chlorine, bromine and iodine, or mixtures of halogens or halogens combined with other organic radicals including cyanurate, hydantoin, peroxide and chlorine dioxide. BCDMH and TICA are preferred anti-pathogen components of the anti-pathogen composition and may be added to a carrier concentrate and measured and dosed into the irrigation water.
    Type: Application
    Filed: May 7, 2012
    Publication date: November 1, 2012
    Inventors: William Bliss, Sandra Bliss