Patents by Inventor William C. Adams

William C. Adams has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11935342
    Abstract: Activation of an automatic driving feature in a vehicle is detected by evaluating sequential vehicle operation data against subtractive and additive heuristic rules that define a likelihood of an automatic driving feature having been engaged as a function of vehicle performance. The sequential vehicle operation data, which does not include an explicit indication of whether the automatic driving feature was engaged, is provided for time intervals of a trip made by the vehicle. Automatic driving information is generated, which provides an indication of whether the automatic driving feature was engaged during a subset of the time intervals.
    Type: Grant
    Filed: May 13, 2022
    Date of Patent: March 19, 2024
    Assignee: Avinew, Inc.
    Inventors: William Anderson Barnes, Randall C. Adams, Daniel R. Peate, Steven Anthony Bentz, G. Edward Combs
  • Patent number: 11910842
    Abstract: Men's underwear having an opening in the front with a pair of overlapping panels overlying the opening with a tactile element secured to one or both panels.
    Type: Grant
    Filed: February 21, 2022
    Date of Patent: February 27, 2024
    Inventor: William C. Adams
  • Patent number: 11624820
    Abstract: An RF PNT system may include LORAN stations. Each LORAN station may include a LORAN antenna, and a LORAN transmitter coupled to the LORAN antenna and configured to transmit a series of LORAN PNT RF pulses having a time spacing between adjacent LORAN PNT RF pulses. One or more of the LORAN stations may include a message embedding generator coupled to the LORAN transmitter and configured to generate message RF bursts based upon an input message, and with each message RF burst being in the time spacing between respective adjacent LORAN PNT RF pulses.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: April 11, 2023
    Assignee: EAGLE TECHNOLOGY, LLC
    Inventors: Francis E. Parsche, Emil G. Svatik, William C. Adams, Jr.
  • Patent number: 11353537
    Abstract: A LORAN device may include a LORAN antenna, a LORAN receiver, an RF signal path extending between the LORAN antenna and the LORAN receiver and being subject to ambient RF interference, and an ambient RF interference canceller coupled in the RF signal path. The ambient RF interference canceller may include an ambient RF interference sensor configured to generate an estimated ambient RF interference signal based on the sensed ambient RF interference, and cancellation circuitry configured to cooperate with the ambient RF interference sensor to generate an ambient RF interference cancellation signal based upon the sensed ambient RF interference signal, and add the ambient RF interference cancellation signal to the RF signal path.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: June 7, 2022
    Assignee: EAGLE TECHNOLOGY, LLC
    Inventors: Francis E. Parsche, Kenneth J. Hendrickson, William C. Adams, Jr.
  • Patent number: 11300647
    Abstract: A long range navigation system may include radio frequency (RF) transmitter stations at fixed geographical locations, each having an RF transmitter and an RF modulator coupled to the RF transmitter, and configured to generate a direct sequence spread spectrum (DSSS) RF signal being spectrally shaped so that 99% of power from the RF transmitter is within the frequency range of 90-110 KHz. Movable RF receiver units each include an RF receiver and a demodulator coupled to the RF receiver configured to demodulate the DSSS RF signal to determine a position of the movable RF receiver unit.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: April 12, 2022
    Assignee: EAGLE TECHNOLOGY, LLC
    Inventors: Gary W. Mason, William C. Adams, Jr.
  • Patent number: 11041932
    Abstract: An enhanced LOng RAnge Navigation (eLORAN) system may include a plurality of eLORAN transmitter stations, and at least one eLORAN receiver device. The eLORAN receiver device may include an eLORAN receive antenna, an eLORAN receiver coupled to the eLORAN receive antenna, and a controller coupled to the eLORAN receiver. The controller may be configured to cooperate with the eLORAN transmitter stations to determine an eLORAN receiver position and receiver clock error corrected from additional secondary factor (ASF) data, the ASF data based upon different geographical positions and different times for each different geographical position.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: June 22, 2021
    Assignee: EAGLE TECHNOLOGY, LLC
    Inventors: Gary W. Mason, William C. Adams, Jr.
  • Patent number: 10957987
    Abstract: A space deployable antenna apparatus includes an inflatable antenna configurable between a deflated storage position and an inflated deployed position. The inflatable antenna includes collapsible tubular elements coupled together in fluid communication. The collapsible tubular elements in the deployed position include a longitudinally extending boom tubular element, at least one driven tubular conductive element transverse to the boom tubular element, at least one reflector tubular conductive element transverse to the boom tubular element, and at least one director tubular conductive element transverse to the boom tubular element. A foam dispenser is configured to inject a solidifiable foam into the inflatable antenna to configure to the inflated deployed position.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: March 23, 2021
    Assignee: HARRIS CORPORATION
    Inventors: Robert C Hildebrand, William C Adams
  • Publication number: 20200350938
    Abstract: A LORAN device may include a LORAN antenna, a LORAN receiver, an RF signal path extending between the LORAN antenna and the LORAN receiver and being subject to ambient RF interference, and an ambient RF interference canceller coupled in the RF signal path. The ambient RF interference canceller may include an ambient RF interference sensor configured to generate an estimated ambient RF interference signal based on the sensed ambient RF interference, and cancellation circuitry configured to cooperate with the ambient RF interference sensor to generate an ambient RF interference cancellation signal based upon the sensed ambient RF interference signal, and add the ambient RF interference cancellation signal to the RF signal path.
    Type: Application
    Filed: May 1, 2019
    Publication date: November 5, 2020
    Inventors: Francis E. PARSCHE, Kenneth J. HENDRICKSON, William C. ADAMS, JR.
  • Publication number: 20200326419
    Abstract: An RF PNT system may include LORAN stations. Each LORAN station may include a LORAN antenna, and a LORAN transmitter coupled to the LORAN antenna and configured to transmit a series of LORAN PNT RF pulses having a time spacing between adjacent LORAN PNT RF pulses. One or more of the LORAN stations may include a message embedding generator coupled to the LORAN transmitter and configured to generate message RF bursts based upon an input message, and with each message RF burst being in the time spacing between respective adjacent LORAN PNT RF pulses.
    Type: Application
    Filed: April 15, 2019
    Publication date: October 15, 2020
    Inventors: Francis E. Parsche, Emil G. Svatik, William C. Adams, JR.
  • Publication number: 20200278416
    Abstract: A long range navigation system may include radio frequency (RF) transmitter stations at fixed geographical locations, each having an RF transmitter and an RF modulator coupled to the RF transmitter, and configured to generate a direct sequence spread spectrum (DSSS) RF signal being spectrally shaped so that 99% of power from the RF transmitter is within the frequency range of 90-110 KHz. Movable RF receiver units each include an RF receiver and a demodulator coupled to the RF receiver configured to demodulate the DSSS RF signal to determine a position of the movable RF receiver unit.
    Type: Application
    Filed: March 1, 2019
    Publication date: September 3, 2020
    Inventors: Gary W. MASON, WILLIAM C. ADAMS, JR.
  • Publication number: 20200271746
    Abstract: An enhanced LOng RAnge Navigation (eLORAN) system may include a plurality of eLORAN transmitter stations, and at least one eLORAN receiver device. The eLORAN receiver device may include an eLORAN receive antenna, an eLORAN receiver coupled to the eLORAN receive antenna, and a controller coupled to the eLORAN receiver. The controller may be configured to cooperate with the eLORAN transmitter stations to determine an eLORAN receiver position and receiver clock error corrected from additional secondary factor (ASF) data, the ASF data based upon different geographical positions and different times for each different geographical position.
    Type: Application
    Filed: February 22, 2019
    Publication date: August 27, 2020
    Inventors: GARY W. MASON, WILLIAM C. ADAMS, JR.
  • Publication number: 20180019520
    Abstract: A space deployable antenna apparatus includes an inflatable antenna configurable between a deflated storage position and an inflated deployed position. The inflatable antenna includes collapsible tubular elements coupled together in fluid communication. The collapsible tubular elements in the deployed position include a longitudinally extending boom tubular element, at least one driven tubular conductive element transverse to the boom tubular element, at least one reflector tubular conductive element transverse to the boom tubular element, and at least one director tubular conductive element transverse to the boom tubular element. A foam dispenser is configured to inject a solidifiable foam into the inflatable antenna to configure to the inflated deployed position.
    Type: Application
    Filed: July 14, 2016
    Publication date: January 18, 2018
    Inventors: Robert C. Hildebrand, William C. Adams
  • Patent number: 9182181
    Abstract: A condensation drain trap for a drain outlet of an air conditioner for draining of condensate waste water. The drain trap has a diaphragm divided by cuts into a plurality of sections to permit the diaphragm to deform, upon the air conditioner being first turned on and a negative pressure being generated inside the air conditioner, to allow passage of air, in a controlled fashion, through the drain trap and into the air conditioner. The diaphragm is designed to retain a column of waste water in the drain trap to balance the negative pressure inside the air conditioner, while the cuts are such that when the column of waste water exceeds a predetermined height or volume, the excess waste water drains out through the diaphragm to maintain the column of waste water at the predetermined height or volume.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 10, 2015
    Inventors: William C. Adams, Jeffrey A. Adams
  • Patent number: 9173347
    Abstract: An improved baler and a method of using the improved baler to produce high density bales. The baler comprises a pick-up assembly configured to pick-up crop material; a compression assembly comprising at least one pair of opposing compression rollers configured to generate a pressure on the crop material sufficient to crush the nodes as it passes between the compression rollers; and a bale chamber, wherein the crushed crop forms a bale. The compression rollers define an adjustable gap therebetween. By adjusting the gap, a pressure sufficient to crush the nodes of the crop may be exerted on the crop material as it passes between the compression rollers may be controlled, resulting in bales of higher density than conventional bales.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: November 3, 2015
    Assignee: CNH Industrial America LLC
    Inventors: John Henry Posselius, Christopher A. Foster, Edward H. Priepke, Kevin M. Smith, Scott Allen Shearer, Michael David Montross, William C. Adams
  • Publication number: 20140238506
    Abstract: A condensate drain trap for an air conditioning system. The abstract of the disclosure is submitted herewith as required by 37 C.F.R. §1.72(b). As stated in 37 C.F.R. §1.72(b): A brief abstract of the technical disclosure in the specification must commence on a separate sheet, preferably following the claims, under the heading “Abstract of the Disclosure.” The purpose of the abstract is to enable the Patent and Trademark Office and the public generally to determine quickly from a cursory inspection the nature and gist of the technical disclosure. The abstract shall not be used for interpreting the scope of the claims. Therefore, any statements made relating to the abstract are not intended to limit the claims in any manner and should not be interpreted as limiting the claims in any manner.
    Type: Application
    Filed: March 15, 2013
    Publication date: August 28, 2014
    Inventors: William C. ADAMS, Jeffrey A. ADAMS
  • Patent number: 8169886
    Abstract: Systems (100) and methods (500) for method for providing a redundant or distinct transmission feature to a communication system (100). The methods involve (508) detecting if there is a communication system fault. If a communication system fault is detected (508:YES), then (512) a plurality of modified transmit signals are generated by combining a transmit signal with a plurality of complex weights (W1, W2, W3). The modified transmit signals are then (514) transmitted from a plurality of antenna elements (106a, 106b, 106c) of the communication system to an object of interest (108). If a communication systems fault is detected (508:NO), then (526) a plurality of redundant or distinct transmit signals are generated by combining the transmit signal with a plurality of first orthogonal or approximately orthogonal numerical sequences. The redundant or distinct transmit signals can then be (528) synchronously transmitted from the antenna elements.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: May 1, 2012
    Assignee: Harris Corporation
    Inventors: G. Patrick Martin, William C. Adams, Jr.
  • Patent number: 7969358
    Abstract: Systems and methods for operating a communications system. The methods involve computing one or more complex weights to be applied to transmit signals and receive signals by beamformers. The complex weights are based at least on configuration data for the communications system. The methods also involve applying a first plurality of weight corrections to the complex weights based on phasing errors occurring in a communication path inclusive of a control system and antenna elements. The methods further involve applying a second plurality of weight corrections to the complex weights based on phase differences at the antenna elements relative to a reference location for the receive signals.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: June 28, 2011
    Assignee: Harris Corporation
    Inventors: G. Patrick Martin, Kathleen Minear, John Roach, Allan V. Dianic, William C. Adams, Jr., Lynda Margaret Ralston
  • Publication number: 20100123618
    Abstract: Methods for compensating for phase shifts of a communication signal. The methods involve determining a first reference signal (Vref-1) at a first location along a transmission path and a second reference signal (Vref-2) at a second location along the transmission path. Vref-2 is the same as Vref-1. At the first location, a first phase offset is determined using Vref-1 and a first communication signal. At the second location, a second phase offset is determined using Vref-2 and a second communication signal. A phase of a third communication signal is adjusted at the second location using the first and second phase offsets to obtain a modified communication signal. The first, second, and third communication signals are the same communication signal obtained at different locations along the transmission path.
    Type: Application
    Filed: November 19, 2008
    Publication date: May 20, 2010
    Applicant: Harris Corporation
    Inventors: G. Patrick Martin, John Roach, William C. Adams, JR., Kathleen Minear, Ronald J. Hash, Lynda Margaret Ralston
  • Publication number: 20100123625
    Abstract: Systems and methods for operating a communications system. The methods involve computing one or more complex weights to be applied to transmit signals and receive signals by beamformers. The complex weights are based at least on configuration data for the communications system. The methods also involve applying a first plurality of weight corrections to the complex weights based on phasing errors occurring in a communication path inclusive of a control system and antenna elements. The methods further involve applying a second plurality of weight corrections to the complex weights based on phase differences at the antenna elements relative to a reference location for the receive signals.
    Type: Application
    Filed: November 19, 2008
    Publication date: May 20, 2010
    Applicant: Harris Corporation
    Inventors: G. Patrick Martin, Kathleen Minear, John Roach, Allan V. Dianic, William C. Adams, JR., Lynda Margaret Ralston
  • Patent number: D634125
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: March 15, 2011
    Inventor: William C. Adams