Patents by Inventor William D. Brown

William D. Brown has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11040784
    Abstract: An adjustment mechanism for a lifting device includes a longitudinal clamp bar and a clamp slidably disposed on the clamp bar. The clamp has a clamp body and at least one clamping member movably connected to the clamp body. The at least one clamping member is operative for (1) acquiring a clamped condition when a lifting force is applied to the clamp body, wherein in the clamped condition, the at least one clamping member is engaged with the longitudinal clamp bar to prevent movement of the clamp along the clamp bar and (2) acquiring an unclamped condition when a lifting force is released from the clamp body, wherein in the unclamped condition, the clamp is free to move along the clamp bar.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: June 22, 2021
    Assignee: AIRBUS CANADA LIMITED PARTNERSHIP
    Inventor: William D. Brown
  • Patent number: 10466183
    Abstract: A system for characterizing the material of an object scanned via a dual-energy computed tomography scanner is provided. The system generates photoelectric and Compton sinograms based on a photoelectric-Compton decomposition of low-energy and high-energy sinograms generated from the scan and based on a scanner spectral response model. The system generates a Compton volume with Compton attenuation coefficients from the Compton sinogram and a photoelectric volume with photoelectric attenuation coefficients from the photoelectric sinogram. The system generates an estimated effective atomic number for a voxel and an estimated electron density for the voxel from the Compton attenuation coefficient and photoelectric coefficient for the voxel and scanner-specific parameters. The system then characterizes the material within the voxel based on the estimated effective atomic number and estimated electron density for the voxel.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: November 5, 2019
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Isaac Seetho, Maurice B. Aufderheide, Stephen G. Azevedo, William D. Brown, Kyle Champley, Daniel Schneberk, G. Patrick Roberson, Jeffrey S. Kallman, Harry E. Martz, Jr., Jerel A. Smith
  • Publication number: 20190118977
    Abstract: An adjustment mechanism for a lifting device includes a longitudinal clamp bar and a clamp slidably disposed on the clamp bar. The clamp has a clamp body and at least one clamping member movably connected to the clamp body. The at least one clamping member is operative for (1) acquiring a clamped condition when a lifting force is applied to the clamp body, wherein in the clamped condition, the at least one clamping member is engaged with the longitudinal clamp bar to prevent movement of the clamp along the clamp bar and (2) acquiring an unclamped condition when a lifting force is released from the clamp body, wherein in the unclamped condition, the clamp is free to move along the clamp bar.
    Type: Application
    Filed: June 5, 2017
    Publication date: April 25, 2019
    Inventor: William D. BROWN
  • Publication number: 20180120241
    Abstract: A system for characterizing the material of an object scanned via a dual-energy computed tomography scanner is provided. The system generates photoelectric and Compton sinograms based on a photoelectric-Compton decomposition of low-energy and high-energy sinograms generated from the scan and based on a scanner spectral response model. The system generates a Compton volume with Compton attenuation coefficients from the Compton sinogram and a photoelectric volume with photoelectric attenuation coefficients from the photoelectric sinogram. The system generates an estimated effective atomic number for a voxel and an estimated electron density for the voxel from the Compton attenuation coefficient and photoelectric coefficient for the voxel and scanner-specific parameters. The system then characterizes the material within the voxel based on the estimated effective atomic number and estimated electron density for the voxel.
    Type: Application
    Filed: October 31, 2016
    Publication date: May 3, 2018
    Inventors: Isaac Seetho, Maurice B. Aufderheide, Stephen G. Azevedo, William D. Brown, Kyle Champley, Daniel Schneberk, G. Patrick Roberson, Jeffrey S. Kallman, Harry E. Martz, JR., Jerel A. Smith
  • Patent number: 7510760
    Abstract: Compositions comprising nanoparticles, microparticles, and combinations thereof, the particles may be overcoated particles. Composite coatings and coated articles made therefrom, the coatings comprising mono or multi layers having a textured outer surface morphology, the layers may be continuous and/or discontinuous and may comprise different particle phases. Methods of making and using said compositions, coatings and coated articles.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: March 31, 2009
    Assignee: Boardof Trustees of the University of Arkansas
    Inventors: Ajay P. Malshe, Wenping Jiang, William D. Brown
  • Patent number: 7112545
    Abstract: The surface of a semiconductor material, e.g., gallium arsenide, is passivated by irradiating the surface with ultra-short laser pulses, until a stable passive surface is achieved. The passive surface so prepared is devoid of a superficial oxide layer.
    Type: Grant
    Filed: September 11, 2000
    Date of Patent: September 26, 2006
    Assignee: The Board of Trustees of the University of Arkansas
    Inventors: Tarak A. Railkar, Ajay P. Malshe, William D. Brown
  • Patent number: 6844248
    Abstract: A low temperature process for forming a metal doped silicon layer in which a silicon layer is deposited onto a substrate at low temperatures, with a metal doping layer then deposited upon the silicon layer. This structure is then annealed at low temperatures to form a metal doped semiconductor having greater than about 1×1020 dopant atoms per cm3 of silicon.
    Type: Grant
    Filed: July 14, 2003
    Date of Patent: January 18, 2005
    Assignee: The Trustees of the University of Arkansas
    Inventors: Hameed A. Naseem, M. Shahidul Haque, William D. Brown
  • Publication number: 20040106227
    Abstract: A low temperature process for forming a metal doped silicon layer in which a silicon layer is deposited onto a substrate at low temperatures, with a metal doping layer then deposited upon the silicon layer. This structure is then annealed at low temperatures to form a metal doped semiconductor having greater than about 1×1020 dopant atoms per cm3 of silicon.
    Type: Application
    Filed: July 14, 2003
    Publication date: June 3, 2004
    Applicant: The Board of Trustees of the University of Arkansas
    Inventors: Hameed A. Naseem, M. Shahidul Haque, William D. Brown
  • Patent number: 6613653
    Abstract: A low temperature process for forming a metal doped silicon layer in which a silicon layer is deposited onto a substrate at low temperatures, with a metal doping layer then deposited upon the silicon layer. This structure is then annealed at low temperatures to form a metal doped semiconductor having greater than about 1×1020 dopant atoms per cm3 of silicon.
    Type: Grant
    Filed: December 31, 2001
    Date of Patent: September 2, 2003
    Assignee: The Board of Trustees of the University of Arkansas
    Inventors: Hameed A. Naseem, M. Shahidul Haque, William D. Brown
  • Patent number: 6607782
    Abstract: Methods for coating a substrate and methods of shaping a workpiece comprise formation and use, respectively, of a surface or substrate comprising a first phase selected from nitrides, carbides. carbonitrides, borides, sulphides, chalcogenides, oxides, and silicides, and a second phase selected from nitrides, carbides, carbonitrides, borides, sulphides, chalcogenides, oxides, and silicides, wherein said second phase comprises a multiplicity of discrete portions positioned into the first phase, with these multiplicity of portions comprising a continuous second phase, and made thereof, coating and articles, especially machining, cutting and shaping tools, wearparts, and methods of making and using the composition, coating and articles.
    Type: Grant
    Filed: June 29, 2000
    Date of Patent: August 19, 2003
    Assignees: Board of Trustees of the University of Arkansas, Valenite, Inc.
    Inventors: Ajay P. Malshe, Sharad N. Yedave, William D. Brown, William C. Russell, Deepak G. Bhat
  • Publication number: 20030087749
    Abstract: A composition including a first phase selected from nitrides, carbides, carbonitrides, borides, sulphides, chalcogenides, oxides, and silicides, and a second phase selected from nitrides, carbides, carbonitrides, borides, sulphides, chalcogenides, oxides, and silicides, wherein said second phase comprises a multiplicity of discrete portions positioned into the first phase, with these multiplicity of portions comprising a continuous second phase, and made thereof, coatings and articles, especially, machining, cutting and shaping tools, wearparts, and methods of making and using the composition, coating and articles.
    Type: Application
    Filed: June 14, 2002
    Publication date: May 8, 2003
    Inventors: Ajay P. Malshe, Sharad N. Yedave, William D. Brown, William C. Russell, Deepak G. Bhat
  • Patent number: 6544599
    Abstract: Method and apparatus for seeding silicon substrates with diamond particles by electrostatic seeding. Method further includes either application of heat to form the particles into a layer, or chemical vapor deposition of diamond layer onto the particles. Disclosed products include silicon substrate having electrostatically affixed diamond particles, silicon substrate having particles at a density of at least 1012 particles per cm2, and silicon substrate having polycrystalline layer having nucleation density of at least 1012 particles per cm2.
    Type: Grant
    Filed: July 31, 1996
    Date of Patent: April 8, 2003
    Inventors: William D. Brown, Rajan A. Beera, Ajay P. Malshe, Hameed A. Naseem
  • Publication number: 20030022026
    Abstract: A composition including a first phase selected from nitrides, carbides, carbonitrides, borides, sulphides, chalcogenides, oxides, and suicides, and a second phase selected from nitrides, carbides, carbonitrides, borides, sulphides, chalcogenides, oxides, and suicides, wherein said second phase comprises a multiplicity of discrete portions positioned into the first phase, with these multiplicity of portions comprising a continuous second phase, and made thereof, coatings and articles, especially, machining, cutting and shaping tools, wearparts, and methods of making and using the composition, coating and articles.
    Type: Application
    Filed: June 14, 2002
    Publication date: January 30, 2003
    Inventors: Ajay P. Malshe, Sharad N. Yedave, William D. Brown, William C. Russell, Deepak G. Bhat
  • Publication number: 20020145235
    Abstract: A method of processing a substrate by first processing the diamond surface with a laser operating at a first wavelength, and then by processing the diamond surface with a laser operating at a second wavelength.
    Type: Application
    Filed: December 8, 2000
    Publication date: October 10, 2002
    Inventors: William D. Brown, Arzu M. zkan, Ajay P. Malshe
  • Publication number: 20020055240
    Abstract: A low temperature process for forming a metal doped silicon layer in which a silicon layer is deposited onto a substrate at low temperatures, with a metal doping layer then deposited upon the silicon layer. This structure is then annealed at low temperatures to form a metal doped semiconductor having greater than about 1×1020 dopant atoms per cm3 of silicon.
    Type: Application
    Filed: December 31, 2001
    Publication date: May 9, 2002
    Applicant: The Board of Trustees of the Univ. of Arkansas
    Inventors: Hameed A. Naseem, M. Shahidul Haque, William D. Brown
  • Patent number: 6339013
    Abstract: A low temperature process for forming a metal doped silicon layer in which a silicon layer is deposited onto a substrate at low temperatures, with a metal doping layer then deposited upon the silicon layer. This structure is then annealed at low temperatures to form a metal doped semiconductor having greater than about 1×1020 dopant atoms per cm3 of silicon.
    Type: Grant
    Filed: May 13, 1997
    Date of Patent: January 15, 2002
    Assignee: The Board of Trustees of the University of Arkansas
    Inventors: Hameed A. Naseem, M. Shahidul Haque, William D. Brown
  • Patent number: 6168744
    Abstract: A method of processing a substrate by first processing the substrate surface with a laser operating at a first wavelength to both evaporate a portion of the substrate and structurally weaken the substrate surface, and then by processing the substrate surface with a laser operating at a second wavelength to remove the structurally weakened surface.
    Type: Grant
    Filed: October 8, 1997
    Date of Patent: January 2, 2001
    Assignee: Board of Trustees University of Arkansas
    Inventors: Ajay P. Malshe, Arzu M. Ozkan, William D. Brown
  • Patent number: 5873992
    Abstract: Disclosed is an electroplating method and products made therefrom, which in one embodiment includes using a current density J.sub.O, to form a conductive metal layer having a surface roughness no greater than the surface roughness of the underlying member. In another embodiment of electroplating a substrate surface having peaks and valleys, the method includes electroplating a conductive metal onto the peaks to cover the peaks with the conductive metal, and into the valleys to substantially fill the valleys with the conductive metal.
    Type: Grant
    Filed: March 24, 1997
    Date of Patent: February 23, 1999
    Assignee: The Board of Trustees of the University of Arkansas
    Inventors: John H. Glezen, Hameed A. Naseem, William D. Brown, Leonard W. Schaper, Ajay P. Malshe
  • Patent number: 5725413
    Abstract: Disclosed are polished and planarized diamond films and a method and apparatus for polishing and planarizing diamond films. The method generally includes mechanical polishing of the diamond film against a ceramic surface in the presence of a treating agent of potassium nitrate and a polishing agent of potassium hydroxide. The produced films have an average surface roughness on the order of 0.05 microns, a planarization uniformity within eight percent, and are relatively free of process-induced contaminants.
    Type: Grant
    Filed: May 6, 1994
    Date of Patent: March 10, 1998
    Assignee: Board of Trustees of the University of Arkansas
    Inventors: Ajay P. Malshe, Hameed A. Naseem, William D. Brown
  • Patent number: 5472370
    Abstract: Disclosed is a method of planarizing a diamond film which generally includes orifices in the surface. The method includes first polishing the diamond film surface to reduce the surface roughness. Next, a filler material is applied to the surface of the film to fill the orifices in the film. Finally, the film is polished to remove excess filler material and expose the diamond film surface. Also disclosed are planarized diamond films diamond substrate having a polished surface of both diamond and filler material and a variation in thickness of less than 8 percent.
    Type: Grant
    Filed: July 29, 1994
    Date of Patent: December 5, 1995
    Assignee: University of Arkansas
    Inventors: Ajay P. Malshe, William D. Brown, Hameed A. Naseem, Leonard W. Schaper