Patents by Inventor William E. Clem

William E. Clem has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190350615
    Abstract: An ultrasonic surgical device is disclosed including a surgical tool including a proximal transducer mounting portion defining a surface, a distal end effector end, and a waveguide disposed therebetween, the waveguide extending along a longitudinal axis. The ultrasonic surgical device further includes a transducer is in mechanical communication with the surface of the transducer mounting portion. The transducer is configured to operate in a D31 mode with respect to the longitudinal axis of the waveguide.
    Type: Application
    Filed: July 31, 2019
    Publication date: November 21, 2019
    Inventors: Jeffrey D. Messerly, Brian D. Black, William A. Olson, Foster B. Stulen, Frederick Estera, William E. Clem, Jerome R. Morgan, Jeffrey L. Aldridge, Stephen M. Leuck, Kevin L. Houser
  • Publication number: 20190328419
    Abstract: A surgical apparatus comprises a body assembly, an ultrasonic transducer, a shaft assembly, a motor, and a locking feature. The ultrasonic transducer is operable to convert electrical power into ultrasonic vibrations. The shaft assembly comprises a waveguide operable to transmit ultrasonic vibrations. The motor is operable to rotate the ultrasonic transducer to thereby selectively couple the ultrasonic transducer with the waveguide. The locking feature is configured to selectively prevent rotation of at least a portion of the shaft assembly relative to the body assembly. The locking feature and the motor may be activated automatically in response to an operator positioning a proximal portion of the shaft assembly in a distal portion of the body assembly. The surgical apparatus may include a feature configured to alert a user when the waveguide has been adequately secured to the ultrasonic transducer.
    Type: Application
    Filed: June 3, 2019
    Publication date: October 31, 2019
    Inventors: Foster B. Stulen, Daniel W. Price, William E. Clem, Cory G. Kimball, Timothy G. Dietz, Kevin L. Houser
  • Patent number: 10455052
    Abstract: A surgical instrument operable to sever tissue includes a body assembly and a selectively coupleable end effector assembly. The end effector assembly may include a transmission assembly and an end effector. The body assembly includes a trigger and a casing configured to couple with the transmission assembly. An information transmission system transmits instrument information received from a sensor, for example, to a secure server via a secure gateway connected to the instrument. The instrument may be previously tested on a calibration kit to pre-determine and load surgeon-specific settings onto the instrument prior to use.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: October 22, 2019
    Assignee: Ethicon LLC
    Inventors: Cory G. Kimball, Daniel W. Price, William E. Clem, Amy L. Marcotte, Danius P. Silkaitis, John B. Schulte, Michael R. Lamping, Stephen L. Balek
  • Patent number: 10420580
    Abstract: Disclosed is an ultrasonic medical device that may include a surgical tool having a proximal end, an end effector, and a waveguide between them, a first transducer in mechanical communication with a first face of the surgical tool, and a second transducer in mechanical communication with an opposing face of the surgical tool, opposite the first transducer. The first transducer and the second transducer are configured to operate in a D31 mode with respect to the waveguide of the surgical tool. Another aspect comprises a method of fabricating the ultrasonic medical device, in which the surgical tool is machined from a portion of a flat metal stock so that the surgical tool has a longitudinal axis oriented at an angle with respect to a grain direction of the flat metal stock thereby optimizing an operational characteristic of the surgical tool.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: September 24, 2019
    Assignee: Ethicon LLC
    Inventors: Jeffrey D. Messerly, Brian D. Black, William A. Olson, Foster B. Stulen, Frederick Estera, William E. Clem, Jerome R. Morgan, Jeffrey L. Aldridge, Stephen M. Leuck, Kevin L. Houser
  • Publication number: 20190239918
    Abstract: A surgical instrument comprises a body assembly and an end effector. The body assembly includes a control module, an orientation sensor communicatively coupled to the control module, and an energy component. The energy component is operable to activate the end effector at a plurality of energy settings. A storage device is communicatively coupled to the control module and includes a plurality of gesture profiles and corresponding energy settings. The control module is configured to set the energy setting of the energy component to a corresponding energy setting in response to a correlation between the output of the orientation sensor and a gesture profile. In some versions, the control module modifies the energy setting based upon output from a force sensor that measures the force on the end effector. The control module may also decrease the energy setting in response to an anomalous acceleration or deceleration detected by an accelerometer.
    Type: Application
    Filed: February 4, 2019
    Publication date: August 8, 2019
    Inventors: Daniel W. Price, Sora Rhee, Cory G. Kimball, Timothy G. Dietz, Ashvani K. Madan, Donna L. Korvick, Jeffrey D. Messerly, William E. Clem, Jacqueline C. Aronhalt, William D. Dannaher, John B. Schulte, Danius P. Silkaitis, Stephen J. Balek, Michael R. Lamping
  • Patent number: 10368892
    Abstract: A surgical apparatus comprises a body assembly, an ultrasonic transducer, a shaft assembly, a motor, and a locking feature. The ultrasonic transducer is operable to convert electrical power into ultrasonic vibrations. The shaft assembly comprises a waveguide operable to transmit ultrasonic vibrations. The motor is operable to rotate the ultrasonic transducer to thereby selectively couple the ultrasonic transducer with the waveguide. The locking feature is configured to selectively prevent rotation of at least a portion of the shaft assembly relative to the body assembly. The locking feature and the motor may be activated automatically in response to an operator positioning a proximal portion of the shaft assembly in a distal portion of the body assembly. The surgical apparatus may include a feature configured to alert a user when the waveguide has been adequately secured to the ultrasonic transducer.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: August 6, 2019
    Assignee: Ethicon LLC
    Inventors: Foster B. Stulen, Daniel W. Price, William E. Clem, Cory G. Kimball, Timothy G. Dietz, Kevin L. Houser
  • Publication number: 20190216490
    Abstract: A surgical apparatus comprises a transducer assembly and a shaft assembly. The transducer assembly is operable to convert electrical power into ultrasonic vibrations. The shaft assembly comprises an ultrasonic waveguide, a sheath, a shroud, and a torque transfer assembly. The waveguide is configured to couple with the transducer assembly. The waveguide is disposed within the sheath. The sheath extends through the shroud. The torque transfer assembly is contained within the shroud. The torque transfer assembly is configured to transfer a predetermined range of torque from the shroud to the waveguide to thereby couple the waveguide with the transducer assembly. The torque transfer assembly is further configured to prevent transfer of torque from the shroud to the waveguide beyond an upper limit of the predetermined range.
    Type: Application
    Filed: January 16, 2019
    Publication date: July 18, 2019
    Inventors: Cory G. Kimball, David A. Witt, William E. Clem, Nathan D. Grubbs, Daniel J. Prenger, Ashvani K. Madan
  • Patent number: 10327798
    Abstract: A surgical instrument comprises a body assembly and an end effector. The body assembly includes a control module, an orientation sensor communicatively coupled to the control module, and an energy component. The energy component is operable to activate the end effector at a plurality of energy settings. A storage device is communicatively coupled to the control module and includes a plurality of gesture profiles and corresponding energy settings. The control module is configured to set the energy setting of the energy component to a corresponding energy setting in response to a correlation between the output of the orientation sensor and a gesture profile. In some versions, the control module modifies the energy setting based upon output from a force sensor that measures the force on the end effector. The control module may also decrease the energy setting in response to an anomalous acceleration or deceleration detected by an accelerometer.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: June 25, 2019
    Assignee: Ethicon LLC
    Inventors: Daniel W. Price, Sora Rhee, Cory G. Kimball, Timothy G. Dietz, Ashvani K. Madan, Donna L. Korvick, Jeffrey D. Messerly, William E. Clem, Jacqueline C. Aronhalt, William D. Dannaher, John B. Schulte, Danius P. Silkaitis, Stephen J. Balek, Michael R. Lamping
  • Patent number: 10226271
    Abstract: A surgical apparatus comprises a transducer assembly and a shaft assembly. The transducer assembly is operable to convert electrical power into ultrasonic vibrations. The shaft assembly comprises an ultrasonic waveguide, a sheath, a shroud, and a torque transfer assembly. The waveguide is configured to couple with the transducer assembly. The waveguide is disposed within the sheath. The sheath extends through the shroud. The torque transfer assembly is contained within the shroud. The torque transfer assembly is configured to transfer a predetermined range of torque from the shroud to the waveguide to thereby couple the waveguide with the transducer assembly. The torque transfer assembly is further configured to prevent transfer of torque from the shroud to the waveguide beyond an upper limit of the predetermined range.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: March 12, 2019
    Assignee: Ethicon LLC
    Inventors: Cory G. Kimball, David A. Witt, William E. Clem, Nathan D. Grubbs, Daniel J. Prenger, Ashvani K. Madan
  • Publication number: 20180132887
    Abstract: A surgical instrument includes an ultrasonic waveguide extending through a body assembly. An ultrasonic blade connects to the ultrasonic waveguide. A clamp arm assembly of the surgical instrument is able to move from an opened position for receiving a tissue toward a closed position for clamping the tissue. The clamp arm assembly includes a clamp body and a clamp pad facing the ultrasonic blade. A clamp arm actuator of the surgical instrument is able to move from a first position toward a second position to direct the clamp arm assembly from the opened position toward the closed position. A modular coupling of the surgical instrument connects to the clamp pad such that at least the clamp pad can be disconnected relative to the ultrasonic blade for replacement thereof.
    Type: Application
    Filed: October 31, 2017
    Publication date: May 17, 2018
    Inventors: Ryan M. Asher, Gregory D. Bishop, Brian D. Black, Chad P. Boudreaux, David J. Cagle, William E. Clem, Joseph Dennis, Kristen G. Denzinger, Benjamin D. Dickerson, Kevin M. Fiebig, Ellen Gentry, Christina M. Hough, John V. Hunt, Cody R. Jackson, Cory G. Kimball, Jeffrey D. Messerly, Gabriel I. Myers, Ion V. Nicolaescu, William A. Olson, Candice Otrembiak, Foster B. Stulen, John K. Swain, Gregory A. Trees, John A. Weed, III, William B. Weisenburgh, II, Eitan T. Wiener, Barry C. Worrell, David C. Yates, Monica L. Zeckel
  • Publication number: 20180078268
    Abstract: Various ultrasonic instruments are disclosed. The ultrasonic instruments include structures configured to indicate the cutting length of the instruments, detect when grasped tissue has extended beyond the cutting length of the instrument, and prevent tissue from extending beyond the cutting length. Several techniques for each types of structures are disclosed.
    Type: Application
    Filed: August 17, 2017
    Publication date: March 22, 2018
    Inventors: Jeffrey D. Messerly, William E. Clem, John A. Weed, III, Eric Stout, Craig T. Davis, John Brady, Joseph D. Dennis, Phillip H. Clauda, Monica L. Zeckel
  • Publication number: 20180055530
    Abstract: Disclosed is an ultrasonic medical device that may include a surgical tool having a proximal end, an end effector, and a waveguide between them, a first transducer in mechanical communication with a first face of the surgical tool, and a second transducer in mechanical communication with an opposing face of the surgical tool, opposite the first transducer. The first transducer and the second transducer are configured to operate in a D31 mode with respect to the waveguide of the surgical tool. Another aspect comprises a method of fabricating the ultrasonic medical device, in which the surgical tool is machined from a portion of a flat metal stock so that the surgical tool has a longitudinal axis oriented at an angle with respect to a grain direction of the flat metal stock thereby optimizing an operational characteristic of the surgical tool.
    Type: Application
    Filed: August 17, 2017
    Publication date: March 1, 2018
    Inventors: Jeffrey D. Messerly, Brian D. Black, William A. Olson, Foster B. Stulen, Frederick Estera, William E. Clem, Jerome R. Morgan, Jeffrey L. Aldridge, Stephen M. Leuck
  • Publication number: 20180055529
    Abstract: Disclosed is a method of fabricating an ultrasonic medical device. The method includes machining a surgical tool from a flat metal stock, contacting a face of a first transducer with a first face of the surgical tool, and contacting a face of a second transducer with an opposing face of the surgical tool opposite the first transducer. The first and second transducers are configured to operate in a D31 mode with respect to the longitudinal portion of the surgical tool. Upon activation, the first transducer and the second transducer are configured to induce a standing wave in the surgical tool and the induced standing wave comprises a node at a node location in the surgical tool and an antinode at an antinode location in the surgical tool.
    Type: Application
    Filed: August 17, 2017
    Publication date: March 1, 2018
    Inventors: Jeffrey D. Messerly, Brian D. Black, William A. Olson, Foster B. Stulen, Frederick Estera, William E. Clem, Jerome R. Morgan, Jeffrey L. Aldridge, Stephen M. Leuck
  • Patent number: 9877720
    Abstract: An electrosurgical device includes a body, an end effector, a cutting member, and a shaft. The end effector comprises a pair of jaws and at least one electrode that is operable to deliver RF energy to tissue clamped between the jaws. The cutting member is operable to cut tissue clamped between the jaws. The shaft includes an articulation section that is operable to selectively position the end effector at non-parallel positions relative to the longitudinal axis of the shaft. The body includes a controller operable to selectively actuate the articulation section. The controller may include a rotary knob, a pivoting knob, or a pivoting fin, among other things. An electrical coupling may contact a conductive moving member along at least two axes. A resiliently biased lever may assist a trigger in returning from an actuated position to a home position.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: January 30, 2018
    Assignee: Ethicon LLC
    Inventors: Barry C. Worrell, Zhifan F. Huang, Jason R. Lesko, Matthew C. Miller, Geoffrey S. Strobl, Gregory A. Trees, Charles S. Black, William E. Clem, Emron Henry, Kevin M. Montgomery
  • Publication number: 20180014848
    Abstract: Ultrasonic surgical instruments having angularly and/or linearly off-set blades are described. The angularly and/or linearly off-set blades may facilitate increased surgical site access, visibility, and manipulability.
    Type: Application
    Filed: July 15, 2016
    Publication date: January 18, 2018
    Inventors: Jeffrey D. Messerly, Cory G. Kimball, William E. Clem, Gregory W. Johnson, Frederick Estera, William B. Weisenburgh, II, Foster B. Stulen
  • Publication number: 20170196585
    Abstract: A surgical instrument comprises a body assembly and an end effector. The body assembly includes a control module, an orientation sensor communicatively coupled to the control module, and an energy component. The energy component is operable to activate the end effector at a plurality of energy settings. A storage device is communicatively coupled to the control module and includes a plurality of gesture profiles and corresponding energy settings. The control module is configured to set the energy setting of the energy component to a corresponding energy setting in response to a correlation between the output of the orientation sensor and a gesture profile. In some versions, the control module modifies the energy setting based upon output from a force sensor that measures the force on the end effector. The control module may also decrease the energy setting in response to an anomalous acceleration or deceleration detected by an accelerometer.
    Type: Application
    Filed: January 31, 2017
    Publication date: July 13, 2017
    Inventors: Daniel W. Price, Sora Rhee, IV, Cory G. Kimball, Timothy G. Dietz, Ashvani K. Madan, Donna L. Korvick, Foster B. Stulen, Jeffrey D. Messerly, William E. Clem, Jacqueline C. Aronhalt, William D. Dannaher, John B. Schulte, Danius P. Silkaitis, Stephen J. Balek, Michael R. Lamping
  • Patent number: 9681884
    Abstract: An apparatus includes an end effector, an energy component, a control module, and a directional force sensor assembly associated with the energy component and control module. The directional force assembly can include a piezoelectric disc, a piezoresistive element, an accelerometer, and/or a Hall Effect sensor. The end effector of the apparatus can include ultrasonic blade, an RF electrode, or a staple driving assembly. In some versions, the energy component includes an ultrasonic transducer. The control module may be configured to operate the energy component at a first energy setting in response to a first detected force and at a second energy setting in response to a second detected force. The apparatus may also include an activation feature to be operated by a user. In some versions the piezoelectric disc may include a plurality of segments and may be configured to induce movement in at least part of the energy component.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: June 20, 2017
    Assignee: Ethicon Endo-Surgery, LLC
    Inventors: William E. Clem, William D. Dannaher, Daniel W. Price, Cory G. Kimball, Foster B. Stulen, Eitan T. Wiener, John B. Schulte, Danius P. Silkaitus, Stephen J. Balek, Michael R. Lamping, Jacqueline C. Aronhalt
  • Publication number: 20170164973
    Abstract: An apparatus includes a body, a shaft assembly, and an end effector. The end effector includes an ultrasonic blade and a clamp arm assembly. The ultrasonic blade is in acoustic communication with an acoustic waveguide of the shaft assembly. The clamp arm assembly is pivotable toward and away from the ultrasonic blade. The clamp arm assembly includes a first electrode and a second electrode. The first and second electrodes are operable to cooperate to apply bipolar RF energy to tissue.
    Type: Application
    Filed: November 18, 2016
    Publication date: June 15, 2017
    Inventors: Jason R. Lesko, Catherine A. Corbett, William B. Weisenburgh, II, Barry C. Worrell, Mark A. Davison, Chad P. Boudreaux, Nathan Cummings, Ellen Gentry, William D. Dannaher, Christina M. Hough, Craig N. Faller, Adam Brown, Jeffrey D. Messerly, Kai Chen, William E. Clem
  • Publication number: 20170164997
    Abstract: An end effector of an instrument is positioned in a patient. An ultrasonic blade of the end effector is positioned against tissue in the patient. The ultrasonic blade is activated to vibrate ultrasonically while the ultrasonic blade is positioned against tissue. At least one electrode of the end effector is positioned against tissue in the patient. The at least one electrode is activated to apply RF electrosurgical energy to tissue against which the at least one electrode is positioned against tissue.
    Type: Application
    Filed: November 18, 2016
    Publication date: June 15, 2017
    Inventors: Gregory W. Johnson, Jason R. Lesko, Frederick L. Estera, Amy M. Krumm, Catherine A. Corbett, William B. Weisenburgh, II, Barry C. Worrell, Mark A. Davison, Chad P. Boudreaux, John A. Hibner, Nathan Cummings, Ellen Gentry, William D. Dannaher, Christina M. Hough, Joseph Isosaki, Craig N. Faller, Shan Wan, Adam Brown, Candice Otrembiak, Eitan T. Wiener, Jeffrey D. Messerly, Kai Chen, Matthew C. Miller, William E. Clem
  • Patent number: 9572592
    Abstract: A surgical instrument comprises a body assembly and an end effector. The body assembly includes a control module, an orientation sensor communicatively coupled to the control module, and an energy component. The energy component is operable to activate the end effector at a plurality of energy settings. A storage device is communicatively coupled to the control module and includes a plurality of gesture profiles and corresponding energy settings. The control module is configured to set the energy setting of the energy component to a corresponding energy setting in response to a correlation between the output of the orientation sensor and a gesture profile. In some versions, the control module modifies the energy setting based upon output from a force sensor that measures the force on the end effector. The control module may also decrease the energy setting in response to an anomalous acceleration or deceleration detected by an accelerometer.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: February 21, 2017
    Assignee: Ethicon Endo-Surgery, LLC
    Inventors: Daniel W. Price, Sora Rhee, Cory G. Kimball, Timothy G. Dietz, Ashvani K. Madan, Donna L. Korvick, Foster B. Stulen, Jeffrey D. Messerly, William E. Clem, Jacqueline C. Aronhalt, William D. Dannaher, John B. Schulte, Danius P. Silkaitis, Stephen J. Balek, Michael R. Lamping