Patents by Inventor William J. Kiefer

William J. Kiefer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6736633
    Abstract: A burner manifold apparatus (10) for delivering reactants to a combustion site of a chemical vapor deposition process includes fluid inlets (32a, 32b), fluid outlets (49), and a plurality of fluid passages (50) extending therebetween. The fluid passages (50) converge toward each other from the fluid inlets to the fluid outlets. One embodiment includes a manifold base (12), a pressure plate (14), and a manifold burner mount (16) for mounting thereto a micromachined burner (58). The fluid passages (50) internal to the manifold base are configured to distribute symmetrically the fluid to the manifold burner mount. The fluid is then channeled through fluid passages in the manifold burner mount. The fluid passages converge, yet remain fluidly isolated from each other, and the fluid passages create a linear array for producing linear streams of fluid. Alternatively, the burner manifold apparatus may include a plurality of manifold elements in a stacked arrangement.
    Type: Grant
    Filed: April 26, 2001
    Date of Patent: May 18, 2004
    Assignee: Corning Incorporated
    Inventors: David F. Dawson-Elli, Xiaodong Fu, Daniel W. Hawtof, William J. Kiefer, John F. Wight, Jr., John Stone, III
  • Patent number: 6550283
    Abstract: Optical fiber is provided with a periodically reversing spin while the fiber is pulled through a melt zone. A cooled region of the fiber downstream from the melt zone passes between a pair of opposed elements. The opposed elements are moved so that surface regions engaging the fiber move in opposite lateral directions relative to one another, thus spinning the fiber about its axis. The lateral movement of the engaged surface portions is periodically reversed to reverse the spin direction. The opposed elements may include belts or rollers, which can be tilted to orientations oblique to the longitudinal direction of the fiber.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: April 22, 2003
    Assignee: Corning Incorporated
    Inventors: Paul E. Blaszyk, William R. Christoff, Daniel E. Gallagher, Robert M. Hawk, William J. Kiefer
  • Publication number: 20020026813
    Abstract: Optical fiber is provided with a periodically reversing spin while the fiber is pulled through a melt zone. A cooled region of the fiber downstream from the melt zone passes between a pair of opposed elements. The opposed elements are moved so that surface regions engaging the fiber move in opposite lateral directions relative to one another, thus spinning the fiber about its axis. The lateral movement of the engaged surface portions is periodically reversed to reverse the spin direction. The opposed elements may include belts or rollers, which can be tilted to orientations oblique to the longitudinal direction of the fiber.
    Type: Application
    Filed: October 2, 2001
    Publication date: March 7, 2002
    Inventors: Paul E. Blaszyk, William R. Christoff, Daniel E. Gallagher, Robert M. Hawk, William J. Kiefer
  • Patent number: 6324872
    Abstract: Optical fiber is provided with a periodically reversing spin while the fiber is pulled through a melt zone. A cooled region of the fiber downstream from the melt zone passes between a pair of opposed elements. The opposed elements are moved so that surface regions engaging the fiber move in opposite lateral directions relative to one another, thus spinning the fiber about its axis. The lateral movement of the engaged surface portions is periodically reversed to reverse the spin direction. The opposed elements may include belts or rollers, which can be tilted to orientations oblique to the longitudinal direction of the fiber.
    Type: Grant
    Filed: April 11, 1997
    Date of Patent: December 4, 2001
    Assignee: Corning Incorporated
    Inventors: Paul E. Blaszyk, William R. Christoff, Daniel E. Gallagher, Robert M. Hawk, William J. Kiefer
  • Patent number: 5922100
    Abstract: A precision burner for oxidizing halide-free, silicon-containing compounds, such as, octamethylcyclotetrasiloxane (OMCTS), is provided. The burner includes a subassembly (13) which can be precisely mounted on a burner mounting block (107) through the use of an alignment stub (158), a raised face (162) on the burner mounting block (107), and a recess (160) in the back of the subassembly (13). The burner's face includes four concentric gas-emitting regions: a first central region (36, 90) from which exits a mixture of OMCTS and O.sub.2, a second innershield region (38, 92) from which exits N.sub.2, a third outershield region (40, 42, 94, 96) from which exits O.sub.2, and a fourth premix region (44, 98) from which exits a mixture of CH.sub.4 and O.sub.2. The burner provides more efficient utilization of halide-free, silicon-containing raw materials than prior burners.
    Type: Grant
    Filed: October 15, 1996
    Date of Patent: July 13, 1999
    Assignee: Corning Incorporated
    Inventors: Michael B. Cain, Robert B. Desorice, William J. Kiefer, Dale R. Powers
  • Patent number: 5599371
    Abstract: A precision burner for oxidizing halide-free, silicon-containing compounds, such as, octamethyl-cyclotetrasiloxane (OMCTS), is provided. The burner includes a subassembly (13) which can be precisely mounted on a burner mounting block (107) through the use of an alignment stub (158), a raised face (162) on the burner mounting block (107), and a recess (160) in the back of the subassembly (13). The burner's face includes four concentric gas-emitting regions: a first central region (36, 90) from which exits a mixture of OMCTS and O.sub.2, a second innershield region (38, 92) from which exits N.sub.2, a third outershield region (40, 42, 94, 96) from which exits O.sub.2, and a fourth premix region (44, 98) from which exits a mixture of CH.sub.4 and O.sub.2. The burner provides more efficient utilization of halide-free, silicon-containing raw materials than prior burners.
    Type: Grant
    Filed: December 30, 1994
    Date of Patent: February 4, 1997
    Assignee: Corning Incorporated
    Inventors: Michael B. Cain, Robert B. Desorice, William J. Kiefer, Dale R. Powers
  • Patent number: 5043001
    Abstract: A liquid cooling method and apparatus for rapid cooling of a hot glass fiber. In FIG. 1, an open ended liquid coolant container (12) is provided at its lower end with an inverted funnel surface (34). A vertically running, hot glass fiber (42) of indefinite length is continuously drawn through the container, as the container continuously receives a coolant liquid at its upper open end (30). The liquid continuously drains from the container lower open end (32) by flowing along flow surface (36) of the inverted funnel (34), downwardly and away from the glass fiber (42). The temperature of the fiber relative to the temperature of the coolant liquid is such that a vapor barrier surrounding the hot fiber is formed due to boiling of the liquid in a zone surrounding the fiber. This vapor zone facilitates diversion of the liquid (change in direction of flow) from the vertical to an angle thereto, along the inverted funnel surface.
    Type: Grant
    Filed: May 29, 1990
    Date of Patent: August 27, 1991
    Assignee: Corning Incorporated
    Inventors: Michael B. Cain, William J. Kiefer, Jackson P. Trentelman, David J. Ulrich
  • Patent number: 4276960
    Abstract: The invention comprises a novel oil distributing arrangement, employing a valve which has a plurality of responses, for use in a gas compressing system or the like. The valve has a plurality of ports for admitting oil thereinto from an oil pump via a cooler, and for discharging oil therefrom, to a gas compressor (or some such similar oil-using end item) or for by-passing oil directly back to the oil pump (or a pump-serving oil reservoir), or for by-passing the cooler, etc. A translating valving element opens and closes communication between different oil admittance and oil discharge ports in the valve, in response to discrete ranges of valve-operating fluid pressures addressed to the valving element, to effect the cited by-passing functions, and to maintain a fairly uniform pump output pressure level.
    Type: Grant
    Filed: May 17, 1979
    Date of Patent: July 7, 1981
    Assignee: Ingersoll-Rand Company
    Inventors: Paul D. Webb, William J. Kiefer, James M. Aumick