Patents by Inventor William John Koros

William John Koros has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160214067
    Abstract: One method as described herein relates to making a membrane comprising an uncrosslinked high molecular weight polyimide polymer with a small amount of bulky diamine. Also as described herein is a hollow fiber polymer membrane comprising an uncrosslinked high molecular weight polyimide polymer with a small amount of bulky diamine. The polyimide polymers include monomers comprising dianhydride monomers, diamino monomers without carboxylic acid functional groups, and optionally diamino monomers with carboxylic acid functional groups, wherein 2 to 10 mole % of the diamino monomers are bulky diamino compounds and the ratio of diamino monomers with carboxylic acid functional groups to diamino monomers without carboxylic acid functional groups is 0 to 2:3. These uncrosslinked high molecular weight polyimide polymers with a small amount of bulky diamine are useful in forming polymer membranes with high permeance and good selectivity that are useful for the separation of fluid mixtures.
    Type: Application
    Filed: April 7, 2016
    Publication date: July 28, 2016
    Applicants: Chevron U.S.A. Inc., Georgia Tech Research Corporation
    Inventors: Stephen Joseph MILLER, William John KOROS, Nanwen LI, Gongping LIU
  • Publication number: 20160177034
    Abstract: One method as described herein relates to making a high molecular weight, monoesterified polyimide polymer using a small amount of bulky diamine. These high molecular weight, monoesterified polyimide polymers are useful in forming crosslinked polymer membranes with high permeance that are useful for the separation of fluid mixtures. Another method as described herein relates to making the crosslinked membranes from the high molecular weight, monoesterified polyimide polymer containing a small amount of bulky diamine. The small amount of bulky diamine allows for formation of both the high molecular weight polyimide polymer and for covalent ester crosslinks via reaction of the carboxylic acid groups with a diol crosslinking agent. This small amount of bulky diamines reduces chain mobility or segmental motion during crosslinking and reduces large loss of permeance. As such, this method provides a crosslinked membrane with good permeance and selectivity.
    Type: Application
    Filed: December 23, 2015
    Publication date: June 23, 2016
    Applicants: Chevron U.S.A. Inc., Georgia Tech Research Corporation
    Inventors: Stephen Joseph Miller, William John Koros, Nanwen Li, Gongping Liu
  • Patent number: 9316123
    Abstract: The present invention generally relates to power generation systems configured to absorb and capture a component, such as carbon dioxide, in a flue gas for later sequestration or utilization, wherein heat generated in the sorption process is captured for use in the power generation system. In some examples, the heat of sorption is used to preheat fluids in one or more systems of the power generation system to reduce the heating load on the subsystem. By using the heat of sorption, the carbon dioxide capture and sequestration process not only reduces or eliminates the concentration of carbon dioxide in the flue gas, but reduces or eliminates the parasitic effect of carbon dioxide capture and sequestration on power generation.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: April 19, 2016
    Assignee: Georgia Tech Research Corporation
    Inventors: Ryan Paul Lively, William John Koros, Ron Chance
  • Patent number: 9211504
    Abstract: Carbon molecular sieves (CMS) membranes having improved thermal and/or mechanical properties are disclosed herein. In one embodiment, a carbon molecular sieve membrane for separating a first and one or more second gases from a feed mixture of the first gas and one or more second gases comprises a hollow filamentary carbon core and a thermally stabilized polymer precursor disposed on at least an outer portion of the core. In some embodiments, the thermally stabilized polymer precursor is created by the process of placing in a reaction vessel the carbon molecular sieve membrane comprising an unmodified aromatic imide polymer, filling the reaction vessel with a modifying agent, and changing the temperature of the reaction vessel at a temperature ramp up rate and ramp down rate for a period of time so that the modifying agent alters the unmodified aromatic imide polymer to form a thermally stabilized polymer precursor.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: December 15, 2015
    Assignees: GEORGIA TECH RESEARCH CORPORATION, SHELL OIL COMPANY
    Inventors: Nitesh Bhuwania, William John Koros, Paul Jason Williams
  • Publication number: 20150290596
    Abstract: The various embodiments of the disclosure relate generally to carbon molecular sieve membranes (CMSM) and their associated fabrication processes for the separation of nitrogenmethane gas mixtures, and more particularly to CMSM that maintain high nitrogen-methane selectivity and high gas permeabilities. Methods for removing nitrogen from a nitrogen methane mixture gas via the use of the CMS membranes and gas enrichment devices using the same are also disclosed.
    Type: Application
    Filed: October 29, 2013
    Publication date: October 15, 2015
    Inventors: William John Koros, Xue Ning
  • Patent number: 8999037
    Abstract: The various embodiments of the disclosure relate generally to carbon molecular sieve membranes (CMSM) and their associated fabrication processes, and more particularly to CMSM that maintain high gas selectivities without losing productivity. Methods for enriching a mixture of gases in one gas via the use of the CMS membranes, and gas enrichment devices using the same, are also disclosed.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: April 7, 2015
    Assignee: Georgia Tech Research Corporation
    Inventors: Rachana Singh, William John Koros
  • Publication number: 20150094445
    Abstract: The present invention provides an asymmetric modified CMS hollow fiber membrane having improved gas separation performance properties and a process for preparing an asymmetric modified CMS hollow fiber membrane having improved gas separation performance properties. The process comprises treating a polymeric precursor fiber with a solution containing a modifying agent prior to pyrolysis. The concentration of the modifying agent in the solution may be selected in order to obtain an asymmetric modified CMS hollow fiber membrane having a desired combination of gas permeance and selectivity properties. The treated precursor fiber is then pyrolyzed to form an asymmetric modified CMS hollow fiber membrane having improved gas permeance.
    Type: Application
    Filed: September 30, 2014
    Publication date: April 2, 2015
    Inventors: Nitesh Bhuwania, William John Koros, Paul Jason Williams
  • Publication number: 20150011815
    Abstract: Disclosed herein is a composite hollow fiber polymer membrane including a porous core layer and a selective sheath layer. The porous core layer includes a polyamide-imide polymer, or a polyetherimide polymer, and the selective sheath layer includes a polyimide polymer, which is prepared from monomers A, B, and C. The monomer A is a dianhydride of the formula wherein X1 and X2 are independently halogenated alkyl group, phenyl or halogen and R1, R2, R3, R4, R5, and R6 are independently H, alkyl, or halogen. The monomer B is a diamino cyclic compound without a carboxylic acid functionality and the monomer C is a diamino cyclic compound with a carboxylic acid functionality. The polyimide polymer further includes covalent ester crosslinks. Also disclosed herein is a method of making the composite polymer membrane and a process for purifying natural gas utilizing the composite polymer membrane.
    Type: Application
    Filed: July 3, 2014
    Publication date: January 8, 2015
    Applicant: GEORGIA TECH RESEARCH CORPORATION
    Inventors: Canghai MA, William John KOROS
  • Patent number: 8709133
    Abstract: The invention concerns carbon molecular sieve membranes (“CMS membranes”), and more particularly the use of such membranes in gas separation. In particular, the present disclosure concerns an advantageous method for producing CMS membranes with desired selectivity and permeability properties. By controlling and selecting the oxygen concentration in the pyrolysis atmosphere used to produce CMS membranes, membrane selectivity and permeability can be adjusted. Additionally, oxygen concentration can be used in conjunction with pyrolysis temperature to further produce tuned or optimized CMS membranes.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: April 29, 2014
    Assignees: Georgia Tech Research Corporation, Shell Oil Company
    Inventors: Mayumi Kiyono, Paul Jason Williams, William John Koros
  • Patent number: 8664335
    Abstract: The various embodiments of the present disclosure relate generally to thermally crosslinked polymeric compositions and methods of making thermally crosslinked polymeric compositions. An embodiment of the present invention comprises a composition comprising: a first polymer comprising a first repeat unit, the first repeat unit comprising a carboxyl group, wherein the first polymer crosslinks to a second polymer formed from a second repeat unit, and wherein the first polymer crosslinks to the second polymer without formation of an ester group.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: March 4, 2014
    Assignee: Georgia Tech Research Corporation
    Inventors: William John Koros, Adam Michal Kratochvil
  • Publication number: 20140000454
    Abstract: The various embodiments of the disclosure relate generally to carbon molecular sieve membranes (CMSM) and their associated fabrication processes, and more particularly to CMSM that maintain high gas selectivities without losing productivity. Methods for enriching a mixture of gases in one gas via the use of the CMS membranes, and gas enrichment devices using the same, are also disclosed.
    Type: Application
    Filed: May 30, 2013
    Publication date: January 2, 2014
    Inventors: Rachana Singh, William John Koros
  • Publication number: 20130305921
    Abstract: The invention concerns carbon molecular sieve membranes (“CMS membranes”), and more particularly the use of such membranes in gas separation. In particular, the present disclosure concerns an advantageous method for producing CMS membranes with desired selectivity and permeability properties. By controlling and selecting the oxygen concentration in the pyrolysis atmosphere used to produce CMS membranes, membrane selectivity and permeability can be adjusted. Additionally, oxygen concentration can be used in conjunction with pyrolysis temperature to further produce tuned or optimized CMS membranes.
    Type: Application
    Filed: June 28, 2013
    Publication date: November 21, 2013
    Inventors: Mayumi Kiyono, Paul Jason Williams, William John Koros
  • Patent number: 8545606
    Abstract: The present invention relates to a method for treating molecular sieve particles for use in a mixed matrix membrane useful in, for example, gas separations. Membranes employing treated molecular sieve particles may exhibit enhanced permeabilities and selectivities in regard to, for example, the separation of carbon dioxide and methane.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: October 1, 2013
    Assignee: Georgia Tech Research Corporation
    Inventors: William John Koros, Jason Keith Ward
  • Patent number: 8486179
    Abstract: The invention concerns carbon molecular sieve membranes (“CMS membranes”), and more particularly the use of such membranes in gas separation. In particular, the present disclosure concerns an advantageous method for producing CMS membranes with desired selectivity and permeability properties. By controlling and selecting the oxygen concentration in the pyrolysis atmosphere used to produce CMS membranes, membrane selectivity and permeability can be adjusted. Additionally, oxygen concentration can be used in conjunction with pyrolysis temperature to further produce tuned or optimized CMS membranes.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: July 16, 2013
    Assignees: Georgia Tech Research Corporation, Shell Oil Company
    Inventors: Mayumi Kiyono, Paul Jason Williams, William John Koros
  • Patent number: 8377172
    Abstract: The present invention relates to new fibers, new processes of using said fibers, and new sheath dope compositions for multi-layer spinning processes. The fibers comprise a porous core and a sheath surrounding said porous core. The fibers may be useful in, for example, processes for removing low level contaminants like sulfur compounds from a gas stream like natural gas.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: February 19, 2013
    Assignee: Georgia Tech Research Corporation
    Inventors: William John Koros, Dhaval A. Bhandari
  • Publication number: 20120324890
    Abstract: The present invention generally relates to power generation systems configured to absorb and capture a component, such as carbon dioxide, in a flue gas for later sequestration or utilization, wherein heat generated in the sorption process is captured for use in the power generation system. In some examples, the heat of sorption is used to preheat fluids in one or more systems of the power generation system to reduce the heating load on the subsystem. By using the heat of sorption, the carbon dioxide capture and sequestration process not only reduces or eliminates the concentration of carbon dioxide in the flue gas, but reduces or eliminates the parasitic effect of carbon dioxide capture and sequestration on power generation.
    Type: Application
    Filed: February 25, 2011
    Publication date: December 27, 2012
    Applicant: GEORGIA TECH RESEARCH CORPORATION
    Inventors: Ryan Paul Lively, William John Koros, Ron Chance
  • Patent number: 8242214
    Abstract: The present invention relates to functionalized polymeric sorbents and processes of employing them to remove low level contaminants from fluid streams. Poly(glycidyl methacrylate-co-trimethylolpropane trimethacrylate) functionalized with a compound having the structure NH2—R1OH wherein R1 is a substituted or unsubstituted phenylene may be particularly useful to remove low levels of phenol compounds from, for example, an aqueous fluid stream comprising one or more sugars such as results from a hydrolysis of lignocellulosic materials.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: August 14, 2012
    Assignee: Georgia Tech Research Corporation
    Inventors: William John Koros, Wulin Qiu, Kuang Zhang
  • Publication number: 20120042780
    Abstract: The present invention relates to a method for treating molecular sieve particles for use in a mixed matrix membrane useful in, for example, gas separations. Membranes employing treated molecular sieve particles may exhibit enhanced permeabilities and selectivities in regard to, for example, the separation of carbon dioxide and methane.
    Type: Application
    Filed: August 20, 2010
    Publication date: February 23, 2012
    Applicant: Georgia Tech Research Corporation
    Inventors: William John Koros, Jason Keith Ward
  • Publication number: 20110269915
    Abstract: The various embodiments of the present disclosure relate generally to thermally crosslinked polymeric compositions and methods of making thermally crosslinked polymeric compositions. An embodiment of the present invention comprises a composition comprising: a first polymer comprising a first repeat unit, the first repeat unit comprising a carboxyl group, wherein the first polymer crosslinks to a second polymer formed from a second repeat unit, and wherein the first polymer crosslinks to the second polymer without formation of an ester group.
    Type: Application
    Filed: June 16, 2009
    Publication date: November 3, 2011
    Applicant: Georgia Tech Research Corporation
    Inventors: William John Koros, Adam Michal Kratochvil
  • Publication number: 20110210073
    Abstract: The present invention relates to functionalized polymeric sorbents and processes of employing them to remove low level contaminants from fluid streams. Poly(glycidyl methacrylate-co-trimethylolpropane trimethacrylate) functionalized with a compound having the structure NH2—R1OH wherein R1 is a substituted or unsubstituted phenylene may be particularly useful to remove low levels of phenol compounds from, for example, an aqueous fluid stream comprising one or more sugars such as results from a hydrolysis of lignocellulosic materials.
    Type: Application
    Filed: February 26, 2010
    Publication date: September 1, 2011
    Applicant: Georgia Tech Research Corporation
    Inventors: William John Koros, Wulin Qiu, Kuang Zhang