Patents by Inventor William Johnstone Ray

William Johnstone Ray has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190221891
    Abstract: The disclosed technology generally relates to thin film-based energy storage devices, and more particularly to printed thin film-based energy storage devices. The thin film-based energy storage device includes a first current collector layer and a second current collector layer over an electrically insulating substrate and adjacently disposed in a lateral direction. The thin film-based energy storage device additionally includes a first electrode layer of a first type over the first current collector layer and a second electrode layer of a second type over the second current collector layer. A separator separates the first electrode layer and the second electrode layer. One or more of the first current collector layer, the first electrode layer, the separator, the second electrode layer and the second current collector layer are printed layers.
    Type: Application
    Filed: January 14, 2019
    Publication date: July 18, 2019
    Inventors: Vera N. Lockett, Yasser Salah, Alexandra Elyse Hartman, Sri Harsha Kolli, Rodger Whitby, William Johnstone Ray, Leila Daneshi
  • Patent number: 10355172
    Abstract: Printed micro-LEDs have a top metal anode electrode that is relatively tall and narrow and a bottom cathode electrode. After the LED ink is cured, the bottom electrodes are in electrical contact with a conductive layer on a substrate. The locations of the LEDs are random. A thin dielectric layer is then printed between the LEDs, and a thin conductive layer, such as a nano-wire layer, is then printed over the dielectric layer to contact the anode electrodes. The top conductive layer over the tall anode electrodes has bumps corresponding with the locations of the LEDs. An omniphobic liquid is then printed which only resides in the “low” areas of the top conductive layer between the bumps. Any optical material is then uniformly printed over the resulting surface. The printed optical material accumulates only on the bump areas by adhesion and surface tension, so is self-aligned with the individual LEDs.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: July 16, 2019
    Assignee: NTHDEGREE TECHNOLOGIES WORLDWIDE INC.
    Inventors: William Johnstone Ray, Richard A. Blanchard
  • Publication number: 20190098759
    Abstract: A programmable circuit includes an array of printed groups of microscopic transistors or diodes having pn junctions. The devices are pre-formed and printed as an ink and cured. The devices have a proper orientation and a reverse orientation after settling on a conductor layer. The devices are connected in parallel within small groups. To neutralize the reverse-oriented devices, a sufficient voltage is applied across the parallel-connected diodes to forward bias only the devices having the reverse orientation. This causes a sufficient current to flow through each of the reverse-orientated devices to destroy an electrical interface between an electrode of the devices and the conductor layer to create an open circuit, such that those devices do not affect a rectifying function of the devices in the group having the proper orientation. An interconnection conductor pattern may then interconnect the groups to form complex logic circuits.
    Type: Application
    Filed: September 19, 2018
    Publication date: March 28, 2019
    Inventors: Richard Austin Blanchard, William Johnstone Ray
  • Publication number: 20190035561
    Abstract: Representative embodiments provide a liquid or gel separator utilized to separate and space apart first and second conductors or electrodes of an energy storage device, such as a battery or a supercapacitor. A representative liquid or gel separator comprises a plurality of particles, typically having a size (in any dimension) between about 0.5 to about 50 microns; a first, ionic liquid electrolyte; and a polymer. In another representative embodiment, the plurality of particles comprise diatoms, diatomaceous frustules, and/or diatomaceous fragments or remains. Another representative embodiment further comprises a second electrolyte different from the first electrolyte; the plurality of particles are comprised of silicate glass; the first and second electrolytes comprise zinc tetrafluoroborate salt in 1-ethyl-3-methylimidalzolium tetrafluoroborate ionic liquid; and the polymer comprises polyvinyl alcohol (“PVA”) or polyvinylidene fluoride (“PVFD”).
    Type: Application
    Filed: October 2, 2018
    Publication date: January 31, 2019
    Inventors: Vera Nicholaevna Lockett, Mark David Lowenthal, Neil O. Shotton, William Johnstone Ray, Theodore I. Kamins
  • Patent number: 10161615
    Abstract: An exemplary printable composition of a liquid or gel suspension of diodes generally includes a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary apparatus may include: a plurality of diodes; at least a trace amount of a first solvent; and a polymeric or resin film at least partially surrounding each diode of the plurality of diodes. Various exemplary diodes have a lateral dimension between about 10 to 50 microns and about 5 to 25 microns in height. Other embodiments may also include a plurality of substantially chemically inert particles having a range of sizes between about 10 to about 50 microns.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: December 25, 2018
    Assignee: NthDegree Technologies Worldwide Inc
    Inventors: Mark David Lowenthal, William Johnstone Ray, Neil O. Shotton, Richard A. Blanchard, Brad Oraw, Mark Allan Lewandowski, Jeffrey Baldridge, Eric Anthony Perozziello
  • Patent number: 10121608
    Abstract: Representative embodiments provide a liquid or gel separator utilized to separate and space apart first and second conductors or electrodes of an energy storage device, such as a battery or a supercapacitor. A representative liquid or gel separator comprises a plurality of particles, typically having a size (in any dimension) between about 0.5 to about 50 microns; a first, ionic liquid electrolyte; and a polymer. In another representative embodiment, the plurality of particles comprise diatoms, diatomaceous frustules, and/or diatomaceous fragments or remains. Another representative embodiment further comprises a second electrolyte different from the first electrolyte; the plurality of particles are comprised of silicate glass; the first and second electrolytes comprise zinc tetrafluoroborate salt in 1-ethyl-3-methylimidalzolium tetrafluoroborate ionic liquid; and the polymer comprises polyvinyl alcohol (“PVA”) or polyvinylidene fluoride (“PVFD”).
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: November 6, 2018
    Assignee: Printed Energy Pty Ltd
    Inventors: Vera Nicholaevna Lockett, Mark David Lowenthal, Neil O. Shotton, William Johnstone Ray, Theodore I. Kamins
  • Publication number: 20180261404
    Abstract: Representative embodiments provide a composition for printing a liquid or gel separator utilized to separate and space apart first and second conductors or electrodes of an energy storage device, such as a battery or a supercapacitor. A representative composition comprises a plurality of particles, typically having a size (in any dimension) between about 0.5 to about 50 microns; a first, ionic liquid electrolyte; and a polymer or polymeric precursor. In another representative embodiment, the plurality of particles comprise diatoms, diatomaceous frustules, and/or diatomaceous fragments or remains. Another representative embodiment further comprises a second electrolyte different from the first electrolyte; the plurality of particles are comprised of silicate glass; the first and second electrolytes comprise zinc tetrafluoroborate salt in 1-ethyl-3-methylimidalzolium tetrafluoroborate ionic liquid; and the polymer comprises polyvinyl alcohol (“PVA”) or polyvinylidene fluoride (“PVFD”).
    Type: Application
    Filed: May 11, 2018
    Publication date: September 13, 2018
    Inventors: Vera Nicholaevna Lockett, Mark David Lowenthal, Neil O. Shotton, William Johnstone Ray, Theodore I. Kamins
  • Patent number: 10020417
    Abstract: A PV module is formed having an array of PV cells, where the cells are separated by gaps. Each cell contains an array of small silicon sphere diodes (10-300 microns in diameter) connected in parallel. The diodes and conductor layers may be patterned by printing. A continuous metal substrate supports the diodes and conductor layers in all the cells. A dielectric substrate is laminated to the metal substrate. Trenches are then formed by laser ablation around the cells to sever the metal substrate to form electrically isolated PV cells. A metallization step is then performed to connect the cells in series to increase the voltage output of the PV module. An electrically isolated bypass diode for each cell is also formed by the trenching step. The metallization step connects the bypass diode and its associated cell in a reverse-parallel relationship.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: July 10, 2018
    Assignee: Printed Energy Pty Ltd
    Inventors: Tricia Youngbull, Bradley Steven Oraw, William Johnstone Ray
  • Patent number: 9972450
    Abstract: Representative embodiments provide a liquid or gel separator utilized to separate and space apart first and second conductors or electrodes of an energy storage device, such as a battery or a capacitor. A representative liquid or gel separator comprises a plurality of particles selected from the group consisting of: diatoms, diatomaceous frustules, diatomaceous fragments, diatomaceous remains, and mixtures thereof; a first, ionic liquid electrolyte; and a polymer or, in the printable composition, a polymer or a polymeric precursor. Another representative embodiment further comprises a second electrolyte different from the first electrolyte; the first and second electrolytes comprise zinc tetrafluoroborate salt in 1-ethyl-3-methylimidalzolium tetrafluoroborate ionic liquid; and the polymer comprises polyvinyl alcohol (“PVA”) or polyvinylidene fluoride (“PVFD”). Additional components, such as additional electrolytes and solvents, may also be included.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: May 15, 2018
    Assignee: Printed Energy Pty Ltd
    Inventors: Vera Nicholaevna Lockett, Mark David Lowenthal, Neil O. Shotton, William Johnstone Ray, Theodore I. Kamins
  • Patent number: 9972449
    Abstract: Representative embodiments provide a composition for printing a liquid or gel separator utilized to separate and space apart first and second conductors or electrodes of an energy storage device, such as a battery or a supercapacitor. A representative composition comprises a plurality of particles, typically having a size (in any dimension) between about 0.5 to about 50 microns; a first, ionic liquid electrolyte; and a polymer or polymeric precursor. In another representative embodiment, the plurality of particles comprise diatoms, diatomaceous frustules, and/or diatomaceous fragments or remains. Another representative embodiment further comprises a second electrolyte different from the first electrolyte; the plurality of particles are comprised of silicate glass; the first and second electrolytes comprise zinc tetrafluoroborate salt in 1-ethyl-3-methylimidalzolium tetrafluoroborate ionic liquid; and the polymer comprises polyvinyl alcohol (“PVA”) or polyvinylidene fluoride (“PVFD”).
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: May 15, 2018
    Assignee: Printed Energy Pty Ltd
    Inventors: Vera Nicholaevna Lockett, Mark David Lowenthal, Neil O. Shotton, William Johnstone Ray, Theodore I. Kamins
  • Publication number: 20180132347
    Abstract: A programmable circuit includes an array of printed groups of microscopic transistors or diodes. The devices are pre-formed and printed as an ink and cured. A patterned hydrophobic layer defines the locations of the printed dots of the devices. The devices in each group are connected in parallel so that each group acts as a single device. Each group has at least one electrical lead that terminates in a patch area on the substrate. An interconnection conductor pattern interconnects at least some of the leads of the groups in the patch area to create logic circuits for a customized application of the generic circuit. The groups may also be interconnected to be logic gates, and the gate leads terminate in the patch area. The interconnection conductor pattern then interconnects the gates for form complex logic circuits.
    Type: Application
    Filed: January 11, 2018
    Publication date: May 10, 2018
    Inventors: William Johnstone Ray, Richard Austin Blanchard, Mark David Lowenthal, Bradley Steven Oraw
  • Publication number: 20180114775
    Abstract: Active LEDs have a control transistor in series with an LED and have a top electrode, a bottom electrode, and a control electrode. The active LEDs are microscopic and dispersed in an ink. A substrate has column lines, and the active LEDs are printed at various pixel locations so the bottom electrodes contact the column lines. A hydrophobic mask defines the pixel locations. Due to the printing process, there are different numbers of active LEDs in the various pixel locations. Row lines and control lines contact the top and control electrodes so that the active LEDs in each single pixel location are connected in parallel. If the LEDs emit blue light, red and green phosphors are printed over various pixel locations to create an ultra-thin color display. Any active LED may be addressed using row and column addressing, and the brightness may be controlled using the control lines.
    Type: Application
    Filed: October 6, 2017
    Publication date: April 26, 2018
    Inventors: William Johnstone Ray, Mark David Lowenthal, Richard Austin Blanchard, Lixin Zheng, Xiaorong Cai, Bradley S. Oraw
  • Publication number: 20180102457
    Abstract: The present invention provides an electronic apparatus, such as a lighting device comprised of light emitting diodes (LEDs) or a power generating apparatus comprising photovoltaic diodes, which may be created through a printing process, using a semiconductor or other substrate particle ink or suspension and using a lens particle ink or suspension. An exemplary apparatus comprises a base; at least one first conductor; a plurality of diodes coupled to the at least one first conductor; at least one second conductor coupled to the plurality of diodes; and a plurality of lenses suspended in a polymer deposited or attached over the diodes. The lenses and the suspending polymer have different indices of refraction. In some embodiments, the lenses and diodes are substantially spherical, and have a ratio of mean diameters or lengths between about 10:1 and 2:1. The diodes may be LEDs or photovoltaic diodes, and in some embodiments, have a junction formed at least partially as a hemispherical shell or cap.
    Type: Application
    Filed: December 8, 2017
    Publication date: April 12, 2018
    Applicants: NthDegree Technologies Worldwide Inc., U.S. Government as represented by the Administrator of the National Aeronautics and Spac
    Inventors: William Johnstone Ray, Mark D. Lowenthal, Neil O. Shotton, Richard A. Blanchard, Mark Allan Lewandowski, Kirk A. Fuller, Donald Odell Frazier
  • Patent number: 9913371
    Abstract: A programmable circuit includes an array of printed groups of microscopic transistors or diodes. The devices are pre-formed and printed as an ink and cured. A patterned hydrophobic layer defines the locations of the printed dots of the devices. The devices in each group are connected in parallel so that each group acts as a single device. Each group has at least one electrical lead that terminates in a patch area on the substrate. An interconnection conductor pattern interconnects at least some of the leads of the groups in the patch area to create logic circuits for a customized application of the generic circuit. The groups may also be interconnected to be logic gates, and the gate leads terminate in the patch area. The interconnection conductor pattern then interconnects the gates for form complex logic circuits.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: March 6, 2018
    Assignee: Nthdegree Technologies Worldwide Inc.
    Inventors: William Johnstone Ray, Richard Austin Blanchard, Mark David Lowenthal, Bradley Steven Oraw
  • Patent number: 9887425
    Abstract: A plurality of batteries is printed on a flexible substrate, where each battery may output the same voltage, such as about 1.5 volts. Batteries in a first subset are connectable in parallel by controllable switches to control the maximum current that can be delivered to a load. Batteries in a second subset are also connectable in parallel by additional controllable switches to control the maximum current that can be delivered to the load. Another group of switches can either connect the two subsets of batteries in series, to generate 3 volts, or connect the subsets in parallel to increase the maximum current. Additional subsets of batteries and their associated switches may be further connected to increase the voltage and current. The power supply may be standardized and configured by the user for a particular load, such as a sensor for a medical skin patch.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: February 6, 2018
    Assignee: Printed Energy Pty. Ltd.
    Inventors: Richard Austin Blanchard, William Johnstone Ray, Mark David Lowenthal, Thomas Frederick Soules, Vera Lockett
  • Publication number: 20180034067
    Abstract: An energy storage device, such as a silver oxide battery, can include a silver-containing cathode and an electrolyte having an ionic liquid. An anion of the ionic liquid is selected from the group consisting of: methanesulfonate, methylsulfate, acetate, and fluoroacetate. A cation of the ionic liquid can be selected from the group consisting of: imidazolium, pyridinium, ammonium, piperidinium, pyrrolidinium, sulfonium, and phosphonium. The energy storage device may include a printed or non-printed separator. The printed separator can include a gel including dissolved cellulose powder and the electrolyte. The non-printed separator can include a gel including at least partially dissolved regenerate cellulose and the electrolyte. An energy storage device fabrication process can include applying a plasma treatment to a surface of each of a cathode, anode, separator, and current collectors. The plasma treatment process can improve wettability, adhesion, electron and/or ionic transport across the treated surface.
    Type: Application
    Filed: October 5, 2017
    Publication date: February 1, 2018
    Inventors: Vera N. Lockett, John G. Gustafson, William Johnstone Ray, Yasser Salah
  • Publication number: 20180022953
    Abstract: A representative printable composition comprises a liquid or gel suspension of a plurality of metallic particles; a plurality of semiconductor particles; and a first solvent. The pluralities of particles may also be comprised of an alloy of a metal and a semiconductor. The composition may further comprise a second solvent different from the first solvent. In a representative embodiment, the first solvent comprises a polyol or mixtures thereof, such as glycerin, and the second solvent comprises a carboxylic or dicarboxylic acid or mixtures thereof, such as glutaric acid. In various embodiments, the metallic particles and the semiconductor particles are nanoparticles between about 5 nm to about 1.5 microns in any dimension. A representative metallic and semiconductor particle ink can be printed and annealed to produce a conductor.
    Type: Application
    Filed: September 19, 2017
    Publication date: January 25, 2018
    Inventors: Vera Nicholaevna Lockett, Mark David Lowenthal, Neil O. Shotton, William Johnstone Ray, Tricia Youngbull, Theodore I. Kamins
  • Publication number: 20180023793
    Abstract: An exemplary printable composition of a liquid or gel suspension of diodes generally includes a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary apparatus may include: a plurality of diodes; at least a trace amount of a first solvent; and a polymeric or resin film at least partially surrounding each diode of the plurality of diodes. Various exemplary diodes have a lateral dimension between about 10 to 50 microns and about 5 to 25 microns in height. Other embodiments may also include a plurality of substantially chemically inert particles having a range of sizes between about 10 to about 50 microns.
    Type: Application
    Filed: September 18, 2017
    Publication date: January 25, 2018
    Inventors: Mark David Lowenthal, William Johnstone Ray, Neil O. Shotton, Richard A. Blanchard, Brad Oraw, Mark Allan Lewandowski, Jeffrey Baldridge, Eric Anthony Perozziello
  • Patent number: 9865767
    Abstract: The present invention provides an electronic apparatus, such as a lighting device comprised of light emitting diodes (LEDs) or a power generating apparatus comprising photovoltaic diodes, which may be created through a printing process, using a semiconductor or other substrate particle ink or suspension and using a lens particle ink or suspension. An exemplary apparatus comprises a base; at least one first conductor; a plurality of diodes coupled to the at least one first conductor; at least one second conductor coupled to the plurality of diodes; and a plurality of lenses suspended in a polymer deposited or attached over the diodes. The lenses and the suspending polymer have different indices of refraction. In some embodiments, the lenses and diodes are substantially spherical, and have a ratio of mean diameters or lengths between about 10:1 and 2:1. The diodes may be LEDs or photovoltaic diodes, and in some embodiments, have a junction formed at least partially as a hemispherical shell or cap.
    Type: Grant
    Filed: January 9, 2016
    Date of Patent: January 9, 2018
    Assignee: NthDegree Technologies Worldwide Inc
    Inventors: William Johnstone Ray, Mark D. Lowenthal, Neil O. Shotton, Richard A. Blanchard, Mark Allan Lewandowski, Kirk A. Fuller, Donald Odell Frazier
  • Patent number: 9786926
    Abstract: An energy storage device, such as a silver oxide battery, can include a silver-containing cathode and an electrolyte having an ionic liquid. An anion of the ionic liquid is selected from the group consisting of: methanesulfonate, methylsulfate, acetate, and fluoroacetate. A cation of the ionic liquid can be selected from the group consisting of: imidazolium, pyridinium, ammonium, piperidinium, pyrrolidinium, sulfonium, and phosphonium. The energy storage device may include a printed or non-printed separator. The printed separator can include a gel including dissolved cellulose powder and the electrolyte. The non-printed separator can include a gel including at least partially dissolved regenerate cellulose and the electrolyte. An energy storage device fabrication process can include applying a plasma treatment to a surface of each of a cathode, anode, separator, and current collectors. The plasma treatment process can improve wettability, adhesion, electron and/or ionic transport across the treated surface.
    Type: Grant
    Filed: July 16, 2014
    Date of Patent: October 10, 2017
    Assignee: PRINTED ENERGY PTY LTD
    Inventors: Vera Lockett, John Gustafson, William Johnstone Ray, Yasser Salah