Patents by Inventor William L. Geisler

William L. Geisler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6872927
    Abstract: Systems and methods for neutralizing pathogen-contaminated mail pieces via variable frequency microwave processing are provided. Mail pieces are initially screened to identify suspicious characteristics or indications of potentially harmful contents. Mail pieces are swept with variable frequency microwaves selected to neutralize pathogens contained within each mail piece without harming the mail piece or other contents thereof. The temperature of each mail piece may be monitored during microwave processing to identify mail pieces containing potentially harmful substances and/or devices. Mail pieces can be irradiated via additional forms of radiation to neutralize pathogenic material on outside surfaces thereof.
    Type: Grant
    Filed: August 12, 2002
    Date of Patent: March 29, 2005
    Assignees: Lambda Technologies, Inc., The University of North Carolina at Chapel Hill
    Inventors: William L. Geisler, Howard M. Reisner, Richard S. Garard
  • Patent number: 6758609
    Abstract: In-situ and post-cure methods of joining optical fibers and optoelectronic components are provided. An in situ method of joining an optical fiber to an optoelectronic component includes positioning an optical fiber and optoelectronic component in adjacent relationship such that light signals can pass therebetween, applying a curable resin having adhesive properties to an interface of the optical fiber and the optoelectronic component, aligning the optical fiber and optoelectronic component relative to each other such that signal strength of light signals passing between the optical fiber and the optoelectronic component is substantially maximized, and irradiating the interface with non-ionizing radiation in RF/microwave energy to rapidly cure the resin.
    Type: Grant
    Filed: June 11, 2002
    Date of Patent: July 6, 2004
    Assignee: Lambda Technologies
    Inventors: Zakaryae Fathi, William L. Geisler, Joseph M. Wander, Iftikhar Ahmad, Richard S. Garard
  • Publication number: 20030228114
    Abstract: In-situ and post-cure methods of joining optical fibers and optoelectronic components are provided. An in situ method of joining an optical fiber to an optoelectronic component includes positioning an optical fiber and optoelectronic component in adjacent relationship such that light signals can pass therebetween, applying a curable resin having adhesive properties to an interface of the optical fiber and the optoelectronic component, aligning the optical fiber and optoelectronic component relative to each other such that signal strength of light signals passing between the optical fiber and the optoelectronic component is substantially maximized, and irradiating the interface with non-ionizing radiation in RF/microwave energy to rapidly cure the resin.
    Type: Application
    Filed: June 11, 2002
    Publication date: December 11, 2003
    Inventors: Zakaryae Fathi, William L. Geisler, Joseph M. Wander, Iftikhar Ahmad, Richard S. Garard
  • Publication number: 20030132227
    Abstract: Systems and methods for neutralizing pathogen-contaminated mail pieces via variable frequency microwave processing are provided. Mail pieces are initially screened to identify suspicious characteristics or indications of potentially harmful contents. Mail pieces are swept with variable frequency microwaves selected to neutralize pathogens contained within each mail piece without harming the mail piece or other contents thereof. The temperature of each mail piece may be monitored during microwave processing to identify mail pieces containing potentially harmful substances and/or devices. Mail pieces can be irradiated via additional forms of radiation to neutralize pathogenic material on outside surfaces thereof.
    Type: Application
    Filed: August 12, 2002
    Publication date: July 17, 2003
    Inventors: William L. Geisler, Howard M. Reisner, Richard S. Garard