Patents by Inventor William L. Johnson

William L. Johnson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9957596
    Abstract: Ni—Fe, Ni—Co, and Ni—Cu-based bulk metallic glass forming alloys are provided. The alloys have critical rod diameters of at least 1 mm and in some instances at least 11 mm. The alloys have composition according to Ni(100-a-b-c-d-e)XaCrbNbcPdBe, wherein X is at least one of Fe, Co, and Cu, the atomic percent X (Fe and/or Co and/or Cu) ranges from 0.5 to 30, the atomic percent of Cr ranges from 2 to 15, the atomic percent of Nb ranges from 1 to 5, the atomic percent of P ranges from 14 to 19, the atomic percent of B ranges from 1 to 5, and the balance is Ni.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: May 1, 2018
    Assignees: Glassimetal Technology, Inc., Apple Inc.
    Inventors: Jong Hyun Na, Chase Crewdson, Oscar Abarca, Danielle Duggins, Maximilien Launey, Marios D. Demetriou, William L. Johnson
  • Patent number: 9920410
    Abstract: Ni-based Cr- and P-bearing alloys that can from centimeter-thick amorphous articles are provided. Within the family of alloys, millimeter-thick bulk-glassy articles can undergo macroscopic plastic bending under load without fracturing catastrophically.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: March 20, 2018
    Assignee: California Institute of Technology
    Inventors: Jong Hyun Na, Marios D. Demetriou, William L. Johnson, Glenn Garrett
  • Patent number: 9920400
    Abstract: The disclosure is directed to Ni—Cr—P eutectic alloys bearing Nb as substitution for Cr that are capable of forming metallic glasses with critical rod diameter of at least 1 mm or more. With further minority addition of Si as replacement for P, such alloys are capable of forming metallic glasses with critical rod diameters as high as 10 mm or more. Specifically, Ni-based compositions with a Cr content of between 5 and 14 atomic percent, Nb content of between 3 and 4 atomic percent, P content of between 17.5 and 19 atomic percent, and Si content of between 1 and 2 atomic percent, were capable of forming bulk metallic glass rods with diameters as large as 6 mm or larger.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: March 20, 2018
    Assignees: Glassimetal Technology, Inc., Apple Inc.
    Inventors: Jong Hyun Na, Michael Floyd, Danielle Duggins, Glenn Garrett, Marios D. Demetriou, William L. Johnson
  • Publication number: 20180065173
    Abstract: A rapid discharge heating and forming apparatus is provided. The apparatus includes a source of electrical energy and at least two electrodes configured to interconnect the source of electrical energy to a metallic glass sample. The apparatus also includes a shaping tool disposed in forming relation to the metallic glass sample. The source of electrical energy and the at least two electrodes are configured to deliver a quantum of electrical energy to the metallic glass sample to heat the metallic glass sample. The shaping tool is configured to apply a deformational force to shape the heated sample to an article. The at least two electrodes have a yield strength of at least 200 MPa, a Young's modulus that is at least 25% higher than the metallic glass sample, and an electrical resistivity that is lower than the metallic glass sample by a factor of at least 3.
    Type: Application
    Filed: September 1, 2017
    Publication date: March 8, 2018
    Inventors: Chase Crewdson, Joseph P. Schramm, Marios D. Demetriou, William L. Johnson
  • Patent number: 9863025
    Abstract: The present disclosure is directed to Ni—P—B alloys and glasses containing small fractions of Nb and Ta and optionally Mn. Over a specific range, the alloys are capable of forming bulk metallic glasses having critical casting thickness in excess of 1 mm. In one embodiment, compositions with a Mn content of between 3 and 4 atomic percent, Nb content of about 3 atomic percent, B content of about 3 atomic percent, and P content of about 16.5 atomic percent, where the balance in Ni, were capable of forming bulk metallic glass rods with diameters as large as 5 mm or larger. In another embodiment, Ni-based compositions with a Mn content of between 5 and 7 atomic percent, Ta content of between 1 and 2 atomic percent, B content of about 3 atomic percent, and P content of about 16.5 atomic percent, where the balance in Ni, were capable of forming bulk metallic glass rods with diameters as large as 5 mm or larger.
    Type: Grant
    Filed: August 12, 2014
    Date of Patent: January 9, 2018
    Assignees: Glassimetal Technology, Inc., Apple Inc.
    Inventors: Jong Hyun Na, Danielle Duggins, Michael Floyd, Glenn Garrett, Maximilien Launey, Marios D. Demetriou, William L. Johnson
  • Patent number: 9863024
    Abstract: A Ni-based bulk metallic glass forming alloy is provided. The alloy includes Ni(100-a-b-c-d)CraNbbPcBd, where an atomic percent of chromium (Cr) a ranges from 3 to 13, an atomic percent of niobium (Nb) b is determined by x?y*a, where x ranges from 3.8 to 4.2 and y ranges from 0.11 to 0.14, an atomic percent of phosphorus (P) c ranges from 16.25 to 17, an atomic percent of boron (B) d ranges from 2.75 to 3.5, and the balance is nickel (Ni), and where the alloy is capable of forming a metallic glass object having a lateral dimension of at least 6 mm, where the metallic glass has a stress intensity factor at crack initiation when measured on a 3 mm diameter rod containing a notch with length between 1 and 2 mm and root radius between 0.1 and 0.15 mm, the stress intensity factor being at least 70 MPa m1/2.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: January 9, 2018
    Assignees: Glassimetal Technology, Inc., Apple Inc.
    Inventors: Jong Hyun Na, Michael Floyd, Marios D. Demetriou, William L. Johnson, Glenn Garrett, Maximilien Launey
  • Patent number: 9845523
    Abstract: The disclosure is directed to a method of forming high-aspect-ratio metallic glass articles that are substantially free of defects and cosmetic flaws by means of rapid capacitive discharge forming. Metallic glass alloys that are stable against crystallization for at least 100 ms at temperatures where the viscosity is in the range of 100 to 104 Pa-s are considered as suitable for forming such high-aspect-ratio articles.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: December 19, 2017
    Assignees: Glassimetal Technology, Inc., Apple Inc.
    Inventors: Joseph P. Schramm, Jong Hyun Na, Marios D. Demetriou, David S. Lee, William L. Johnson
  • Patent number: 9828659
    Abstract: The disclosure is directed to Ni-based glass-forming alloys bearing Cr and P, wherein the Cr atomic concentration is greater than 7 percent and the P atomic concentration is greater than 12 percent, and methods of fluxing such alloys such that their glass-forming ability is enhanced with respect to the glass-forming ability associated with their unfluxed state.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: November 28, 2017
    Assignee: Glassimetal Technology, Inc.
    Inventors: Jong Hyun Na, Michael Floyd, Danielle Duggins, Marios D. Demetriou, William L. Johnson
  • Patent number: 9816166
    Abstract: The disclosure is directed to Ni—P—B alloys bearing Mn and optionally Cr and Mo that are capable of forming a metallic glass, and more particularly metallic glass rods with diameters at least 1 mm and as large as 5 mm or larger. The disclosure is further directed to Ni—Mn—Cr—Mo—P—B alloys capable of demonstrating a good combination of glass forming ability, strength, toughness, bending ductility, and corrosion resistance.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: November 14, 2017
    Assignee: Glassimetal Technology, Inc.
    Inventors: Jong Hyun Na, Michael Floyd, Marios D. Demetriou, William L. Johnson, Glenn Garrett, Maximilien Launey, Danielle Duggins
  • Patent number: 9777359
    Abstract: Ferrous metal alloys including Fe, Co and optionally Ni with metalloids Si, B and P are provided that are substantially close to the peak in glass forming ability and have a combination of both good glass formability and good ferromagnetic properties. In particular, Fe/Co-based compositions wherein the Co content is between 15 and 30 atomic percent and the metalloid content is between 22 and 24 atomic percent at a well-defined metalloid moiety, have been shown to be capable of forming bulk glassy rods with diameters as large as 4 mm or larger. In addition, incorporating a small content of Ni under 10 atomic percent and additions of Mo, Cr, Nb, Ge, or C at an incidental impurity level of up to 2 atomic percent are not expected to impair the bulk-glass-forming ability of the present alloys.
    Type: Grant
    Filed: May 7, 2014
    Date of Patent: October 3, 2017
    Assignee: California Institute of Technology
    Inventors: Xiao Liu, Marios D. Demetriou, William L. Johnson, Michael Floyd
  • Patent number: 9745641
    Abstract: An apparatus and method of uniformly heating, rheologically softening, and thermoplastically forming metallic glasses rapidly into a net shape using a rapid capacitor discharge forming (RCDF) tool are provided. The RCDF method utilizes the discharge of electrical energy stored in a capacitor to uniformly and rapidly heat a sample or charge of metallic glass alloy to a predetermined “process temperature” between the glass transition temperature of the amorphous material and the equilibrium melting point of the alloy in a time scale of several milliseconds or less. Once the sample is uniformly heated such that the entire sample block has a sufficiently low process viscosity it may be shaped into high quality amorphous bulk articles via any number of techniques including, for example, injection molding, dynamic forging, stamp forging, and blow molding in a time frame of Less than 1 second.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: August 29, 2017
    Assignee: California Institute of Technology
    Inventors: William L. Johnson, Marios D. Demetriou, Choong Paul Kim, Joseph P. Schramm
  • Publication number: 20170241006
    Abstract: The disclosure provides Zr—Ti—Cu—Ni—Al metallic glass-forming alloys and metallic glasses that have a high glass forming ability along with a high thermal stability of the supercooled liquid against crystallization.
    Type: Application
    Filed: February 24, 2017
    Publication date: August 24, 2017
    Inventors: Jong Hyun Na, Glenn Garrett, Kyung-Hee Han, Georg Kaltenboeck, Chase Crewdson, Marios D. Demetriou, William L. Johnson
  • Publication number: 20170241003
    Abstract: The present disclosure provides Au-based alloys comprising Si capable of forming metallic glass matrix composites, and metallic glass matrix composites formed thereof. The Au-based metallic glass matrix composites according to the present disclosure comprise a primary-Au crystalline phase and a metallic glass phase and are free of any other phase. In certain embodiments, the metallic glass matrix composites according to the present disclosure satisfy the 18-Karat Gold Alloy Hallmark.
    Type: Application
    Filed: February 21, 2017
    Publication date: August 24, 2017
    Applicant: Glassimetal Technology, Inc.
    Inventors: Jong Hyun Na, William L. Johnson, Marios D. Demetriou, Glenn Garrett, Kyung-Hee Han, Maximilien E. Launey
  • Publication number: 20170203358
    Abstract: The disclosure is directed to an apparatus comprising feedback-assisted control of the heating process in rapid discharge heating and forming of metallic glass articles.
    Type: Application
    Filed: January 13, 2017
    Publication date: July 20, 2017
    Inventors: Joseph P. Schramm, Marios D. Demetriou, William L. Johnson
  • Patent number: 9708699
    Abstract: The present disclosure provides specified ranges in the Fe—Mo—Ni—Cr—P—C—B alloys such that the alloys are capable of forming bulk glasses having unexpectedly high glass-forming ability. The critical rod diameter of the disclosed alloys is at least 10 mm.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: July 18, 2017
    Assignee: Glassimetal Technology, Inc.
    Inventors: Jong Hyun Na, Michael Floyd, Glenn Garrett, Marios D. Demetriou, William L. Johnson
  • Patent number: 9693698
    Abstract: An exemplary EMG response detection system may be configured to 1) direct an implantable stimulator to sequentially present a plurality of substantially identical stimulation events to a patient, 2) record a plurality of EMG signals generated by a muscle in the patient and each corresponding to a presentation of a particular stimulation event included in the plurality of substantially identical stimulation events, 3) determine an asynchronous component of each of the recorded EMG signals, and 4) utilize the asynchronous components of the recorded EMG signals to determine whether an EMG response is evoked by the stimulation events.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: July 4, 2017
    Assignee: Advanced Bionics AG
    Inventors: Leonid M. Litvak, William L. Johnson
  • Publication number: 20170152588
    Abstract: Ni-based Cr- and P-bearing alloys that can from centimeter-thick amorphous articles are provided. Within the family of alloys, millimeter-thick bulk-glassy articles can undergo macroscopic plastic bending under load without fracturing catastrophically.
    Type: Application
    Filed: July 13, 2015
    Publication date: June 1, 2017
    Inventors: Jong Hyun Na, Marios D. Demetriou, William L. Johnson, Glenn Garrett
  • Publication number: 20170152587
    Abstract: Ni—Co—Cr—Ta—P—B alloys and metallic glasses with controlled ranges are provided. The alloys demonstrate a combination of good glass forming ability, high toughness, and high stability of the supercooled liquid. The disclosed alloys are capable of forming metallic glass rods of diameters at least 3 mm and up to about 8 mm or greater. Certain alloys with good glass forming ability also have high notch toughness approaching 100 MPa m1/2, and stability of the supercooled liquid approaching 60° C.
    Type: Application
    Filed: September 30, 2014
    Publication date: June 1, 2017
    Inventors: Jong Hyun Na, Oscar Abarca, Chase Crewdson, Maximilien Launey, Marios D. Demetriou, William L. Johnson
  • Publication number: 20170088933
    Abstract: Surface treatment methods for Ni-based metallic glasses are provided that promote passivation and decrease the amount of Ni released when the Ni-based metallic glass is exposed to a saline containing environment.
    Type: Application
    Filed: September 23, 2016
    Publication date: March 30, 2017
    Inventors: Maximilien Launey, Marios D. Demetriou, Glenn Garrett, Jong Hyun Na, William L. Johnson
  • Publication number: 20170028682
    Abstract: The disclosure is directed to methods of forming metallic glass multilayers by depositing a liquid layer of a metallic glass forming alloy over a metallic glass layer, and to multilayered metallic glass articles produced using such methods.
    Type: Application
    Filed: July 24, 2015
    Publication date: February 2, 2017
    Inventors: William L. Johnson, Marios D. Demetriou, Joseph P. Schramm