Patents by Inventor William P. Risk, III

William P. Risk, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11580366
    Abstract: An event-driven neural network including a plurality of interconnected core circuits is provided. Each core circuit includes an electronic synapse array that has multiple digital synapses interconnecting a plurality of digital electronic neurons. A synapse interconnects an axon of a pre-synaptic neuron with a dendrite of a post-synaptic neuron. A neuron integrates input spikes and generates a spike event in response to the integrated input spikes exceeding a threshold. Each core circuit also has a scheduler that receives a spike event and delivers the spike event to a selected axon in the synapse array based on a schedule for deterministic event delivery.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: February 14, 2023
    Assignee: International Business Machines Corporation
    Inventors: Filipp Akopyan, John V. Arthur, Rajit Manohar, Paul A. Merolla, Dharmendra S. Modha, Alyosha Molnar, William P. Risk, III
  • Publication number: 20200065658
    Abstract: An event-driven neural network includes a plurality of interconnected core circuits is provided. Each core circuit includes an electronic synapse array has multiple digital synapses interconnecting a plurality of digital electronic neurons. A synapse interconnects an axon of a pre-synaptic neuron with a dendrite of a post-synaptic neuron. A neuron integrates input spikes and generates a spike event in response to the integrated input spikes exceeding a threshold. Each core circuit also has a scheduler that receives a spike event and delivers the spike event to a selected axon in the synapse array based on a schedule for deterministic event delivery.
    Type: Application
    Filed: October 28, 2019
    Publication date: February 27, 2020
    Inventors: Filipp Akopyan, John V. Arthur, Rajit Manohar, Paul A. Merolla, Dharmendra S. Modha, Alyosha Molnar, William P. Risk, III
  • Patent number: 10504021
    Abstract: An event-driven neural network includes a plurality of interconnected core circuits is provided. Each core circuit includes an electronic synapse array has multiple digital synapses interconnecting a plurality of digital electronic neurons. A synapse interconnects an axon of a pre-synaptic neuron with a dendrite of a post-synaptic neuron. A neuron integrates input spikes and generates a spike event in response to the integrated input spikes exceeding a threshold. Each core circuit also has a scheduler that receives a spike event and delivers the spike event to a selected axon in the synapse array based on a schedule for deterministic event delivery.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: December 10, 2019
    Assignees: International Business Machines Corporation, Cornell University
    Inventors: Filipp Akopyan, John V. Arthur, Rajit Manohar, Paul A. Merolla, Dharmendra S. Modha, Alyosha Molnar, William P. Risk, III
  • Patent number: 9269044
    Abstract: An event-driven neural network includes a plurality of interconnected core circuits is provided. Each core circuit includes an electronic synapse array has multiple digital synapses interconnecting a plurality of digital electronic neurons. A synapse interconnects an axon of a pre-synaptic neuron with a dendrite of a post-synaptic neuron. A neuron integrates input spikes and generates a spike event in response to the integrated input spikes exceeding a threshold. Each core circuit also has a scheduler that receives a spike event and delivers the spike event to a selected axon in the synapse array based on a schedule for deterministic event delivery.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: February 23, 2016
    Assignees: International Business Machines Corporation, Cornell University
    Inventors: Filipp Akopyan, John V. Arthur, Rajit Manohar, Paul A. Merolla, Dharmendra S. Modha, Alyosha Molnar, William P. Risk, III
  • Publication number: 20150262055
    Abstract: An event-driven neural network includes a plurality of interconnected core circuits is provided. Each core circuit includes an electronic synapse array has multiple digital synapses interconnecting a plurality of digital electronic neurons. A synapse interconnects an axon of a pre-synaptic neuron with a dendrite of a post-synaptic neuron. A neuron integrates input spikes and generates a spike event in response to the integrated input spikes exceeding a threshold. Each core circuit also has a scheduler that receives a spike event and delivers the spike event to a selected axon in the synapse array based on a schedule for deterministic event delivery.
    Type: Application
    Filed: August 14, 2012
    Publication date: September 17, 2015
    Applicants: Cornell University, International Business Machines Corporation
    Inventors: Filipp Akopyan, John V. Arthur, Rajit Manohar, Paul A. Merolla, Dharmendra S. Modha, Alyosha Molnar, William P. Risk, III
  • Patent number: 8909576
    Abstract: An event-driven neural network includes a plurality of interconnected core circuits is provided. Each core circuit includes an electronic synapse array has multiple digital synapses interconnecting a plurality of digital electronic neurons. A synapse interconnects an axon of a pre-synaptic neuron with a dendrite of a post-synaptic neuron. A neuron integrates input spikes and generates a spike event in response to the integrated input spikes exceeding a threshold. Each core circuit also has a scheduler that receives a spike event and delivers the spike event to a selected axon in the synapse array based on a schedule for deterministic event delivery.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: December 9, 2014
    Assignee: International Business Machines Corporation
    Inventors: Filipp Akopyan, John V. Arthur, Rajit Manohar, Paul A. Merolla, Dharmendra S. Modha, Alyosha Molnar, William P. Risk, III
  • Publication number: 20130073497
    Abstract: An event-driven neural network includes a plurality of interconnected core circuits is provided. Each core circuit includes an electronic synapse array has multiple digital synapses interconnecting a plurality of digital electronic neurons. A synapse interconnects an axon of a pre-synaptic neuron with a dendrite of a post-synaptic neuron. A neuron integrates input spikes and generates a spike event in response to the integrated input spikes exceeding a threshold. Each core circuit also has a scheduler that receives a spike event and delivers the spike event to a selected axon in the synapse array based on a schedule for deterministic event delivery.
    Type: Application
    Filed: September 16, 2011
    Publication date: March 21, 2013
    Applicants: Cornell University, INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Filipp Akopyan, John V. Arthur, Rajit Manohar, Paul A. Merolla, Dharmendra S. Modha, Alyosha Molnar, William P. Risk, III
  • Patent number: 4791631
    Abstract: A process and apparatus are disclosed for producing a beam of coherent radiation at essentially 459 nm by mixing, in a nonlinear crystal consisting essentially of KTP, two laser beams, one at essentially 1064 nm and the other at essentially 808 nm. The 1064 nm radiation is derived from a Nd:YAG laser that consists of an input mirror, an output mirror and a Nd:YAG crystal, and contains also the KTP crystal. The Nd:YAG laser is pumped by an essentially 808 nm semiconductor diode laser beam, which passes through the input mirror and through the KTP crystal into the Nd:YAG laser crystal where it is absorbed. The 1064 nm radiation oscillating inside the Nd:YAG laser resonator is mixed either with the said 808 nm pump beam or with 808 nm radiation provided by a second semiconductor diode laser whose light is coupled with the 1064 nm beam using a beamsplitter. The essentially 459 nm beam passes through the output mirror to a utilization device.
    Type: Grant
    Filed: August 31, 1987
    Date of Patent: December 13, 1988
    Assignee: International Business Machines Corporation
    Inventors: Jean-Claude J. E. Baumert, Gary C. Bjorklund, Wilfried Lenth, William P. Risk, III, Franklin M. Schellenberg
  • Patent number: 4735476
    Abstract: A Bragg cell device for use as a tap in optical systems. In one embodiment an acoustic transducer is secured to a surface of an acoustic transmission medium, which is adjustably secured in hertzian contact with a surface of a waveguide. Bulk acoustic waves at frequencies above about 1 GHz are transmitted from the transducer through the transmission medium into the waveguide along a propagation path wherein the acoustic wavefronts intersect a light path in the waveguide at an angle which satisfies Bragg conditions, producing deflection of light out of the light path. Preferably, the transmission medium is also an optical conductor and is oriented upon the waveguide to receive the deflected light and transmit it to a polished optical window on the transmission medium. A grating transducer is secured on the transmission medium to detect acoustic signals reflected in the transmission medium.
    Type: Grant
    Filed: September 18, 1985
    Date of Patent: April 5, 1988
    Assignee: Board of Trustees of the Leland Stanford Junior University
    Inventors: Brian L. Heffner, Gordon S. Kino, William P. Risk, III, Butrus Khuri-Yakub