Patents by Inventor William Paul Mordarski

William Paul Mordarski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11604266
    Abstract: A method for developing a map of objects in a region surrounding a location is disclosed. The method includes interrogating the region along a detection axis with a series of optical pulses and detecting reflections of the optical pulses that originate at objects located along the detection axis. A multi-dimensional map of the region is developed by scanning the detection axis about the location in at least one dimension. The reflections are detected via a single-photon detector that is armed using a sub-gating scheme such that the single-photon detector selectively detects photons of reflections that originate only within each of a plurality of zones that collectively define the detection field. In some embodiments, the optical pulses have a wavelength within the range of 1350 nm to 1390 nm, which is a spectral range having a relatively high eye-safety threshold and a relatively low solar background.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: March 14, 2023
    Assignee: ARGO AI, LLC
    Inventors: Evgenii Yuryevich Kotelnikov, William Paul Mordarski, Igor Kudryashov, Mark D. Entwistle, Sabbir Sajjad Rangwala
  • Publication number: 20200103501
    Abstract: A method for developing a map of objects in a region surrounding a location is disclosed. The method includes interrogating the region along a detection axis with a series of optical pulses and detecting reflections of the optical pulses that originate at objects located along the detection axis. A multi-dimensional map of the region is developed by scanning the detection axis about the location in at least one dimension. The reflections are detected via a single-photon detector that is armed using a sub-gating scheme such that the single-photon detector selectively detects photons of reflections that originate only within each of a plurality of zones that collectively define the detection field. In some embodiments, the optical pulses have a wavelength within the range of 1350 nm to 1390 nm, which is a spectral range having a relatively high eye-safety threshold and a relatively low solar background.
    Type: Application
    Filed: December 3, 2019
    Publication date: April 2, 2020
    Inventors: Evgenii Yuryevich Kotelnikov, William Paul Mordarski, Igor Kudryashov, Mark D. Entwistle, Sabbir Sajjad Rangwala
  • Patent number: 10520591
    Abstract: A method for developing a map of objects in a region surrounding a location is disclosed. The method includes interrogating the region along a detection axis with a series of optical pulses and detecting reflections of the optical pulses that originate at objects located along the detection axis. A multi-dimensional map of the region is developed by scanning the detection axis about the location in at least one dimension. The reflections are detected via a single-photon detector that is armed using a sub-gating scheme such that the single-photon detector selectively detects photons of reflections that originate only within each of a plurality of zones that collectively define the detection field. In some embodiments, the optical pulses have a wavelength within the range of 1350 nm to 1390 nm, which is a spectral range having a relatively high eye-safety threshold and a relatively low solar background.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: December 31, 2019
    Assignee: ARGO AI, LLC
    Inventors: Evgenii Yuryevich Kotelnikov, William Paul Mordarski, Igor Kudryashov, Mark D. Entwistle, Sabbir Sajjad Rangwala
  • Publication number: 20170176576
    Abstract: A method for developing a map of objects in a region surrounding a location is disclosed. The method includes interrogating the region along a detection axis with a series of optical pulses and detecting reflections of the optical pulses that originate at objects located along the detection axis. A multi-dimensional map of the region is developed by scanning the detection axis about the location in at least one dimension. The reflections are detected via a single-photon detector that is armed using a sub-gating scheme such that the single-photon detector selectively detects photons of reflections that originate only within each of a plurality of zones that collectively define the detection field. In some embodiments, the optical pulses have a wavelength within the range of 1350 nm to 1390 nm, which is a spectral range having a relatively high eye-safety threshold and a relatively low solar background.
    Type: Application
    Filed: March 7, 2017
    Publication date: June 22, 2017
    Inventors: Evgenii Yuryevich Kotelnikov, William Paul Mordarski, Igor Kudryashov, Mark D. Entwistle, Sabbir Sajjad Rangwala
  • Patent number: 9625580
    Abstract: A method for developing a map of objects in a region surrounding a location is disclosed. The method includes interrogating the region along a detection axis with a series of optical pulses and detecting reflections of the optical pulses that originate at objects located along the detection axis. A multi-dimensional map of the region is developed by scanning the detection axis about the location in at least one dimension. The reflections are detected via a single-photon detector that is armed using a sub-gating scheme such that the single-photon detector selectively detects photons of reflections that originate only within each of a plurality of zones that collectively define the detection field. In some embodiments, the optical pulses have a wavelength within the range of 1350 nm to 1390 nm, which is a spectral range having a relatively high eye-safety threshold and a relatively low solar background.
    Type: Grant
    Filed: January 3, 2014
    Date of Patent: April 18, 2017
    Assignee: Princeton Lightwave, Inc.
    Inventors: Evgenii Yuryevich Kotelnikov, William Paul Mordarski, Igor Kudryashov, Mark D. Entwistle, Sabbir Sajjad Rangwala
  • Publication number: 20150192676
    Abstract: A method for developing a map of objects in a region surrounding a location is disclosed. The method includes interrogating the region along a detection axis with a series of optical pulses and detecting reflections of the optical pulses that originate at objects located along the detection axis. A multi-dimensional map of the region is developed by scanning the detection axis about the location in at least one dimension. The reflections are detected via a single-photon detector that is armed using a sub-gating scheme such that the single-photon detector selectively detects photons of reflections that originate only within each of a plurality of zones that collectively define the detection field. In some embodiments, the optical pulses have a wavelength within the range of 1350 nm to 1390 nm, which is a spectral range having a relatively high eye-safety threshold and a relatively low solar background.
    Type: Application
    Filed: January 3, 2014
    Publication date: July 9, 2015
    Applicant: Princeton Lightwave, Inc.
    Inventors: Evgenii Yuryevich Kotelnikov, William Paul Mordarski, Igor Kudryashov, Mark D. Entwistle, Sabbir Sajjad Rangwala
  • Patent number: 8796605
    Abstract: A single-photon receiver and method for detecting a single-photon are presented. The receiver comprises a SPAD that receives a gating signal having a fundamental frequency in the 100 MHz to multiple GHz range. The receiver further comprises a two-stage frequency filter for filtering the output of the SPAD, wherein the filter has: (1) a notch filter response at the fundamental frequency; and (2) a low-pass filter response whose cutoff frequency is less than the first harmonic of the fundamental frequency. As a result, the frequency filter removes substantially all the frequency components in the SPAD output without significant degradation of the signal quality but with reduced complexity, cost, and footprint requirement relative to receivers in the prior art.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: August 5, 2014
    Assignee: Princeton Lightwave, Inc.
    Inventors: William Paul Mordarski, Mark Allen Itzler
  • Publication number: 20140027607
    Abstract: A single-photon receiver and method for detecting a single-photon are presented. The receiver comprises a SPAD that receives a gating signal having a fundamental frequency in the 100 MHz to multiple GHz range. The receiver further comprises a two-stage frequency filter for filtering the output of the SPAD, wherein the filter has: (1) a notch filter response at the fundamental frequency; and (2) a low-pass filter response whose cutoff frequency is less than the first harmonic of the fundamental frequency. As a result, the frequency filter removes substantially all the frequency components in the SPAD output without significant degradation of the signal quality but with reduced complexity, cost, and footprint requirement relative to receivers in the prior art.
    Type: Application
    Filed: May 4, 2012
    Publication date: January 30, 2014
    Applicant: PRINCETON LIGHTWAVE, INC.
    Inventors: William Paul Mordarski, Mark Allen Itzler