Patents by Inventor William R. McKee

William R. McKee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7694269
    Abstract: The present application is directed to a method of selectively positioning sub-resolution assist features (SRAF) in a photomask pattern for an interconnect. The method comprises determining if a first interconnect pattern option will result in improved circuit performance compared with a second interconnect pattern option, where the first option is designed to be formed with SRAF and the second option is designed to be formed without SRAF. If it is determined that the first option will result in improved circuit performance, the first pattern option is selected as a target pattern and one or more SRAF patterns are positioned to facilitate patterning of the first pattern option. If it is not determined that the first option will result in improved performance, the second pattern option is selected as a target pattern.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: April 6, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Nagaraj Savithri, Mark E. Mason, William R. McKee
  • Patent number: 7458058
    Abstract: Verifying a process margin for a mask pattern includes receiving the mask pattern for patterning features on a semiconductor wafer. The mask pattern is modified according to a wafer pattern model operable to estimate a wafer pattern resulting from the mask pattern. An intermediate stage model is selected to apply to a portion of the mask pattern, where the intermediate stage model is operable to estimate an intermediate stage of the wafer pattern. A process margin of the portion is verified by selecting a test of the intermediate stage model, and performing the test on the portion to verify the process margin of the portion.
    Type: Grant
    Filed: June 10, 2005
    Date of Patent: November 25, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Ashesh Parikh, William R. McKee, Thomas J. Aton
  • Publication number: 20080203518
    Abstract: The present application is directed to a method of selectively positioning sub-resolution assist features (SRAF) in a photomask pattern for an interconnect. The method comprises determining if a first interconnect pattern option will result in improved circuit performance compared with a second interconnect pattern option, where the first option is designed to be formed with SRAF and the second option is designed to be formed without SRAF. If it is determined that the first option will result in improved circuit performance, the first pattern option is selected as a target pattern and one or more SRAF patterns are positioned to facilitate patterning of the first pattern option. If it is not determined that the first option will result in improved performance, the second pattern option is selected as a target pattern.
    Type: Application
    Filed: February 26, 2007
    Publication date: August 28, 2008
    Inventors: Nagaraj Savithri, Mark E. Mason, William R. McKee
  • Patent number: 7402514
    Abstract: An embodiment of the instant invention is a method of providing a connection between a first conductor and a second conductor wherein the first conductor is situated under the second conductor and separated by a first insulating layer, the method comprising the steps of: forming an opening in the first insulating layer (layer 124 or 128 of FIGS. 1-4), the opening having a top, a bottom and sidewalls and is situated between the first conductor and the second conductor; forming a second insulating layer (layer 134, 138, and 142 of FIGS. 3 and 4) exclusively on the sidewalls of the opening thereby leaving a smaller opening in the first insulating layer; forming a conductive material (material 140 of FIGS. 3 and 4) in the smaller opening; and wherein the first insulating layer is comprised of a low-k material and the second insulating layer is comprised of an insulator which has electrical leakage properties which are less than the electrical leakage properties of the first insulating layer.
    Type: Grant
    Filed: January 24, 2003
    Date of Patent: July 22, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Robert Tsu, Joe W. McPherson, William R. McKee, Thomas Bonifield
  • Patent number: 7323727
    Abstract: A method and apparatus for providing a meshed power and signal bus system on an array type integrated circuit that minimizes the size of the circuit. In a departure from the art, through-holes for the mesh system are placed in the cell array, as well as the peripheral circuits. The power and signal buses of the mesh system run in both vertical and horizontal directions across the array such that all the vertical buses lie in one metal layer, and all the horizontal buses lie in another metal layer. The buses of one layer are connected to the appropriate bus(es) of the other layer using through-holes located in the array. Once connected, the buses extend to the appropriate sense amplifier drivers. The method and apparatus are facilitated by an improved subdecoder circuit implementing a hierarchical word line structure.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: January 29, 2008
    Assignees: Hitachi, Ltd., Texas Instruments Incorporated
    Inventors: Goro Kitsukawa, Takesada Akiba, Hiroshi Otori, William R. McKee, Jeffrey E. Koelling, Troy H. Herndon
  • Patent number: 7211842
    Abstract: A method and apparatus for providing a meshed power and signal bus system on an array type integrated circuit that minimizes the size of the circuit. In a departure from the art, through-holes for the mesh system are placed in the cell array, as well as the peripheral circuits. The power and signal buses of the mesh system run in both vertical and horizontal directions across the array such that all the vertical buses lie in one metal layer, and all the horizontal buses lie in another metal layer. The buses of one layer are connected to the appropriate bus(es) of the other layer using through-holes located in the array. Once connected, the buses extend to the appropriate sense amplifier drivers. The method and apparatus are facilitated by an improved subdecoder circuit implementing a hierarchical word line structure.
    Type: Grant
    Filed: June 22, 2005
    Date of Patent: May 1, 2007
    Assignees: Hitachi, Ltd., Texas Instruments Incorporated
    Inventors: Goro Kitsukawa, Takesada Akiba, Hiroshi Otori, William R. McKee, Jeffrey E. Koelling, Troy H. Herndon
  • Patent number: 6967371
    Abstract: A method and apparatus for providing a meshed power and signal bus system on an array type integrated circuit that minimizes the size of the circuit. In a departure from the art, through-holes for the mesh system are placed in the cell array, as well as the peripheral circuits. The power and signal buses of the mesh system run in both vertical and horizontal directions across the array such that all the vertical buses lie in one metal layer, and all the horizontal buses lie in another metal layer. The buses of one layer are connected to the appropriate bus(es) of the other layer using through-holes located in the array. Once connected, the buses extend to the appropriate sense amplifier drivers. The method and apparatus are facilitated by an improved subdecoder circuit implementing a hierarchical word line structure.
    Type: Grant
    Filed: September 20, 2004
    Date of Patent: November 22, 2005
    Assignees: Hitachi, Ltd., Texas Instruments Incorporated
    Inventors: Goro Kitsukawa, Takesada Akiba, Hiroshi Otori, William R. McKee, Jeffrey E. Koelling, Troy H. Herndon
  • Patent number: 6831317
    Abstract: A method and apparatus for providing a meshed power and signal bus system on an array type integrated circuit that minimizes the size of the circuit. In a departure from the art, through-holes for the mesh system are placed in the cell array, as well as the peripheral circuits. The power and signal buses of the mesh system run in both vertical and horizontal directions across the array such that all the vertical buses lie in one metal layer, and all the horizontal buses lie in another metal layer. The buses of one layer are connected to the appropriate bus(es) of the other layer using through-holes located in the array. Once connected, the buses extend to the appropriate sense amplifier drivers. The method and apparatus are facilitated by an improved subdecoder circuit implementing a hierarchical word line structure.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: December 14, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Goro Kitsukawa, Takesada Akiba, Hiroshi Otori, William R. McKee, Jeffrey E. Koelling, Troy H. Herndon
  • Patent number: 6815742
    Abstract: A method and apparatus for providing a meshed power and signal bus system on an array type integrated circuit that minimizes the size of the circuit. In a departure from the art, through-holes for the mesh system are placed in the cell array, as well as the peripheral circuits. The power and signal buses of the mesh system run in both vertical and horizontal directions across the array such that all the vertical buses lie in one metal layer, and all the horizontal buses lie in another metal layer. The buses of one layer are connected to the appropriate bus(es) of the other layer using through-holes located in the array. Once connected, the buses extend to the appropriate sense amplifier drivers. The method and apparatus are facilitated by an improved subdecoder circuit implementing a hierarchical word line structure.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: November 9, 2004
    Assignees: Hitachi, Ltd., Texas Instruments Incorporated
    Inventors: Goro Kitsukawa, Takesada Akiba, Hiroshi Otori, William R. McKee, Jeffrey E. Koelling, Troy H. Herndon
  • Publication number: 20040147112
    Abstract: An embodiment of the instant invention is a method of providing a connection between a first conductor and a second conductor wherein the first conductor is situated under the second conductor and separated by a first insulating layer, the method comprising the steps of: forming an opening in the first insulating layer (layer 124 or 128 of FIGS. 1-4), the opening having a top, a bottom and sidewalls and is situated between the first conductor and the second conductor; forming a second insulating layer (layer 134, 138, and 142 of FIGS. 3 and 4) exclusively on the sidewalls of the opening thereby leaving a smaller opening in the first insulating layer; forming a conductive material (material 140 of FIGS. 3 and 4) in the smaller opening; and wherein the first insulating layer is comprised of a low-k material and the second insulating layer is comprised of an insulator which has electrical leakage properties which are less than the electrical leakage properties of the first insulating layer.
    Type: Application
    Filed: January 24, 2003
    Publication date: July 29, 2004
    Inventors: Robert Tsu, Joe W. McPherson, William R. McKee, Thomas Bonifield
  • Publication number: 20040129974
    Abstract: A method and apparatus for providing a meshed power and signal bus system on an array type integrated circuit that minimizes the size of the circuit. In a departure from the art, through-holes for the mesh system are placed in the cell array, as well as the peripheral circuits. The power and signal buses of the mesh system run in both vertical and horizontal directions across the array such that all the vertical buses lie in one metal layer, and all the horizontal buses lie in another metal layer. The buses of one layer are connected to the appropriate bus(es) of the other layer using through-holes located in the array. Once connected, the buses extend to the appropriate sense amplifier drivers. The method and apparatus are facilitated by an improved subdecoder circuit implementing a hierarchical word line structure.
    Type: Application
    Filed: December 5, 2003
    Publication date: July 8, 2004
    Applicants: Hitachi, Ltd., Texas Instruments Incorporated
    Inventors: Goro Kitsukawa, Takesada Akiba, Hiroshi Otori, William R. McKee, Jeffrey E. Koelling, Troy H. Herndon
  • Patent number: 6653676
    Abstract: The present invention discloses a novel integrated circuit capacitor and a method of forming such a capacitor. The capacitor formation begins with a base electrode 18 adjacent an insulating region 26. This base electrode 18 can comprise either polysilicon or a metal. A layer 28 of a first material, such as a siliciding metal, is formed over the base electrode 18 as well as the adjacent insulating region. A self-aligned capacitor electrode 12 can then be formed by reacting the first material 28 with the base electrode 18 and removing unreacted portions of the first material 28 from the insulating region 26. The capacitor is then completed by forming a dielectric layer 16 over the self-aligned capacitor electrode 12 and a second capacitor electrode 14 over the dielectric layer 16.
    Type: Grant
    Filed: July 30, 2001
    Date of Patent: November 25, 2003
    Assignee: Texas Instruments Incorporated
    Inventors: Robert Tsu, Isamu Asano, Shinpei Iijima, William R. McKee
  • Patent number: 6559050
    Abstract: A conducting plug/contact structure for use with integrated circuit includes a tungsten conducting plug formed in the via with a tungsten-silicon-nitride (WSiYNZ) region providing the interface between the tungsten conducting plug and the substrate (silicon) layer. The interface region is formed providing a nitrided surface layer over the exposed dielectric surfaces and the exposed substrate surface (i.e., exposed by a via in the dielectric layer) prior to the formation of tungsten/tungsten nitride layer filling the via. The structure is annealed forming a tungsten conducting plug with a tungsten-silicon-nitride interface between the conducting plug and the substrate. According to another embodiment, a tungsten nitride surface layer is formed over the nitrided surface layer prior to the formation of a tungsten layer to fill the via.
    Type: Grant
    Filed: October 19, 2000
    Date of Patent: May 6, 2003
    Assignee: Texas Instruments Incorporated
    Inventors: William R. McKee, Jiong-Ping Lu, Ming-Jang Hwang, Dirk N. Anderson, Wei Lee
  • Publication number: 20030067018
    Abstract: A method and apparatus for providing a meshed power and signal bus system on an array type integrated circuit that minimizes the size of the circuit. In a departure from the art, through-holes for the mesh system are placed in the cell array, as well as the peripheral circuits. The power and signal buses of the mesh system run in both vertical and horizontal directions across the array such that all the vertical buses lie in one metal layer, and all the horizontal buses lie in another metal layer. The buses of one layer are connected to the appropriate bus(es) of the other layer using through-holes located in the array. Once connected, the buses extend to the appropriate sense amplifier drivers. The method and apparatus are facilitated by an improved subdecoder circuit implementing a hierarchical word line structure.
    Type: Application
    Filed: December 10, 2002
    Publication date: April 10, 2003
    Applicant: Hitachi, Ltd.
    Inventors: Goro Kitsukawa, Takesada Akiba, Hiroshi Otori, William R. McKee, Jeffrey E. Koelling, Troy H. Herndon
  • Patent number: 6528888
    Abstract: An integrated circuit. The circuit includes a memory cell array including wordlines 201 formed on a substrate and bitlines 200 and capacitors 203 formed over the wordlines. The bitlines have a first thickness and pitch. The circuit also includes circuits peripheral to the array including transistors formed in the substrate and conductors 202 over the transistors. The conductors have a second thickness and pitch. The circuit is further characterized in that the bitlines and conductors are formed in a common conductive layer. In further embodiments, the first thickness and pitch are smaller than the second thickness and pitch.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: March 4, 2003
    Assignee: Texas Instruments Incorporated
    Inventors: Chih-Chen Cho, Jeffrey A. McKee, William R. McKee, Isamu Asano, Robert Y. Tsu
  • Patent number: 6512257
    Abstract: A method and apparatus for providing a meshed power and signal bus system on an array type integrated circuit that minimizes the size of the circuit. In a departure from the art, through-holes for the mesh system are placed in the cell array, as well as the peripheral circuits. The power and signal buses of the mesh system run in both vertical and horizontal directions across the array such that all the vertical buses lie in one metal layer, and all the horizontal buses lie in another metal layer. The buses of one layer are connected to the appropriate bus(es) of the other layer using through-holes located in the array. Once connected, the buses extend to the appropriate sense amplifier drivers. The method and apparatus are facilitated by an improved subdecoder circuit implementing a hierarchical word line structure.
    Type: Grant
    Filed: April 11, 2002
    Date of Patent: January 28, 2003
    Assignees: Hitachi, Inc., Texas Instruments Incorporated
    Inventors: Goro Kitsukawa, Takesada Akiba, Hiroshi Otori, William R. McKee, Jeffrey E. Koelling, Troy H. Herndon
  • Patent number: 6461955
    Abstract: A dual damascene process. After the via etch, a via protect layer (114) is deposited in the via (112). The via protect layer (114) comprises a material that has a dry etch rate at least equal to that of the IMD (108) and a wet etch rate that is approximately 100 times that of the IMD (108) or greater. Exemplary materials include PSG, BPSG, and HSQ. The trench pattern (120) is formed and both the via protect layer (114) and IMD (108) are etched. The remaining portions of the via protect layer (114) are then removed prior to forming the metal layer (122).
    Type: Grant
    Filed: March 9, 2000
    Date of Patent: October 8, 2002
    Assignee: Texas Instruments Incorporated
    Inventors: Robert Tsu, Qi-Zhong Hong, William R. Mckee
  • Publication number: 20020140015
    Abstract: A method and apparatus for providing a meshed power and signal bus system on an array type integrated circuit that minimizes the size ofthe circuit. In a departure from the art, through-holes for the mesh system are placed in the cell array, as well as the peripheral circuits. The power and signal buses of the mesh system run in both vertical and horizontal directions across the array such that all the vertical buses lie in one metal layer, and all the horizontal buses lie in another metal layer. The buses of one layer are connected to the appropriate bus(es) of the other layer using through-holes located in the array. Once connected, the buses extend to the appropriate sense amplifier drivers. The method and apparatus are facilitated by an improved subdecoder circuit implementing a hierarchical word line structure.
    Type: Application
    Filed: April 11, 2002
    Publication date: October 3, 2002
    Inventors: Goro Kitsukawa, Takesada Akiba, Hiroshi Otori, William R. McKee, Jeffrey E. Koelling, Troy H. Herndon
  • Patent number: 6396088
    Abstract: A method and apparatus for providing a meshed power and signal bus system on an array type integrated circuit that minimizes the size of the circuit. In a departure from the art, through-holes for the mesh system are placed in the cell array, as well as the peripheral circuits. The power and signal buses of the mesh system run in both vertical and horizontal directions across the array such that all the vertical buses lie in one metal layer, and all the horizontal buses lie in another metal layer. The buses of one layer are connected to the appropriate bus(es) of the other layer using through-holes located in the array. Once connected, the buses extend to the appropriate sense amplifier drivers. The method and apparatus are facilitated by an improved subdecoder circuit implementing a hierarchical word line structure.
    Type: Grant
    Filed: July 19, 2001
    Date of Patent: May 28, 2002
    Assignee: Hitachi, Ltd.
    Inventors: Goro Kitsukawa, Takesada Akiba, Hiroshi Otori, William R. McKee, Jeffrey E. Koelling, Troy H. Herndon
  • Publication number: 20020014646
    Abstract: The present invention discloses a novel integrated circuit capacitor and a method of forming such a capacitor. The capacitor formation begins with a base electrode 18 adjacent an insulating region 26. This base electrode 18 can comprise either polysilicon or a metal. A layer 28 of a first material, such as a siliciding metal, is formed over the base electrode 18 as well as the adjacent insulating region. A self-aligned capacitor electrode 12 can then be formed by reacting the first material 28 with the base electrode 18 and removing unreacted portions of the first material 28 from the insulating region 26. The capacitor is then completed by forming a dielectric layer 16 over the self-aligned capacitor electrode 12 and a second capacitor electrode 14 over the dielectric layer 16.
    Type: Application
    Filed: July 30, 2001
    Publication date: February 7, 2002
    Inventors: Robert Tsu, Isamu Asano, Shinpei Iijima, William R. McKee